fortiss

Technical Report / Student Internship

Fortiss, Industrial loT

Jorge de Lima Tostes — Intern

Nisrine Bnouhanna — First Supervisor

Prof. Dr. Rute C. Sofia — Coordinator and Second Supervisor

Munich — Germany

Acknowledgements

The work developed in this internship relates with a fortiss open-source demonstrator, TSMatch. The work
has been supervised by Nisrine Bnouhanna, and by Prof. Dr. Rute C. Sofia.

The work has also been supported by the student Erkan Karabulut, who has been developing a component
of TSMatch, the TSMatch client.

Executive Summary

This document corresponds to the proposed DetNetWiFi dissemination and publication plan. The planning
shall be regularly revised and updated via reports due on M12 (D1.2) and M20 (D1.3). The aim of this
report is to assist in a better and coordinated dissemination of the scientific and technological results of
DetNetWiFi.

Contents

1.

2.

3.

[a 1A ge e [ot i Te] o IR O PSP PPTOPRRPRR 5
R R o o] U PP OPPT 5
1.2. Proposed Activities and SChEAUIEocviiiiiiie e 5
0 T [0 =T o a1 Yo M o ¥- | SRR 7
IR S 2 (oY Tot <Yl @ U ol) o o =TSSR 7

BaCKEIOUNG WOTK....eiiiiiiiie ettt et e e et e e e st e e e e e aabe e e e e anbaeeeennteeesenstaeeeenntaeesenreeas 8
D2 B I \V/ F- o] o J 0 Y ol =T o | PP PPPPPROE 8
2.2, TSMaAtCh DEMONSTIATON. . .iiiiiiiiiieiee ettt ettt ettt e st e sab e e sbe e s bt e e sabeeebbeesabeesnaeesabeeas 8
2.3. Service Descriptions and Current Ontology in TSMatCh.........cccoviiieiiiii i 9

Architecture and Implementation ASPECES.......cociiieiciiee et e e ree e e erre e e eeabee e e eeabeeeeeeareeas 12
3.1, Service Description IMOTEIS.cciicuuiiiiiiiiie ettt ee e s e e e s e e s s abe e e e ssbeeeeennbeeas 14
3.2, Parser COMPONENT .. e asesasassasassssasassaasasanesasenns 15

3.2.1. Detailed Code DESCIIPLIONvviiiiiieee ettt e e sree e e s sabee e e e areeas 18

3.2.2. HOW TO RUN Lottt s 19

3.2.3. LIMITAtIONS. .. e 20
3.3, External Service INTerface (ESI)ueuciieiiee ettt ertee sttt e e aae e e te e e sabeesreeebaeesaraeenns 21

3.3.1. Detailed Code DESCIIPLIONvuiiiiciiiee e e e sree e e s sabae e e e nraeas 23

3.3.2. HOW TO RUN ittt 24

3.3.3. Dealing with changes to the TSMatch Structure and to the Taxonomy............ccccveeennieen. 25

SUMMATY AN0 NEXE SEOPS .uiiiiieiiiiiiiiieie et e e e e e e e e s et er e e e e e e e ssabttaeeeeeesesaassssennaeassessnnsnnes 27

REFEIEINCES ..ttt ettt sttt b e s bt e s et e st e e it e e bt e s bt e sreesanesanesane e reenes 28

List of Tables

Table 1: Parser SOftWare STTUCTUIE.uiiii ittt e e e et e e e e e e e s tnbra e e e e e e e s nnraaaeeeas 16
Table 2: External Service Interface COA@ STrUCTUIE.uuuuuiiiiiiriiiiiiiiiiiieierirerirerererarererararaaarararaaa—a—a———————————— 21

List of Figures

Figure 1: Internship Gantt Chart. ..o et e e e st e e e eaar e e e e sbbeeessanreeeean 7
Figure 2: TSMatCh demMONSTIator.ccccuiiieiciiieeecieee et erte e e et e e e et r e e e eataeeessaseeeesaaaeeeeansseeesannseeenan 8
Figure 3: Early version of the Ontology for TSMatch iNPUES.cvuiiiiciiiie e e 9
Figure 4: Code EXample 1 — WSDL @XaMPIE.....ccccuieiieiiiieeeciiie ettt esree e et e e e s itee e e aae e s e e sare e e e enaaee e enreeas 11
FIBUIE 5: WSDL'S STIUCTUIE. ...vviiiiiiiieecciiee e ecitee e ettt e e e rtre e e e st e e e e st e e e e e bt e e e eeabeeesanstaeeeenssaeesennseeeeenseneeennsenas 11
Figure 6: Code Example 2 — WSDL structure following the ontology developed.ccccoeevieviecieeeennnen. 12
Figure 7: Architecture Diagram for the demonstrator’s system. The “API Connector” corresponds to the
T g T oV ol [=Y =T <SP 13
Figure 8: Communication Diagram involving the developed components.ccccceeeciieeiiicieececciiee e, 14
Figure 9: TSMatch client developed for ANdroid.eeieiiiiiiiiiieccee e 19

Figure 10: Communication Diagram for the APl CONNECLON. ...ccccuiiiiiiiiiee ettt 22

https://fortiss365-my.sharepoint.com/personal/sofia_fortiss_org/Documents/fortiss/Team/Students/HiWis/JorgedeLima/JorgedeLimaTechnicalReport_FINAL_RS.docx#_Toc89280375

1. Introduction

This report is an official and technical documentation of the work developed during the six months of the
internship (“Pflichtpraktikum”) developed as part of the student’s master program for EIGSI — La Rochelle
in fortiss GmbH.

The report covers the planned activities, design choices, implementation aspects and provides
information about constraints found during the project that led to the addition of new tasks.

1.1. Focus

The work developed served as a mandatory internship required by EIGSI as a conclusion project for the
10t semester of studies, necessary for acquiring the diploma of master’s in engineering.

This work was focused on providing technical support to work being developed in the context of
"Industrial 10T”, regarding supporting decentralised data exchange. Specifically, the work shall assist the
development of tasks in the context of the ”Industrial loTLab” project of fortiss, namely, in tasks
concerning the demonstrator “Decentralised data exchange Demonstrator”, aka TSMatch. The work
developed was also be integrated into a demonstration in the context of the H2020 EFPF project. The
specific goal of the work was to support the automated parsing of semantic descriptions of loT things, to
allow a better matching to semantic descriptions of loT services.

1.2. Proposed Activities and Schedule

Three main activities and a study phase were included as the initial goal of the work plan for this
internship; moreover, a fourth activity was included during the project’s development. These activities
were: creation of service description models in the W3C recommended description languages;
development of a software-based component that parses description files, validates their contents, and
serializes requests to TSMatch; evaluation of the work developed by presenting a technical report, and
provide a demonstration and a presentation. An extra task has been added, namely, the creation of an
API connector that receives external service’s requirements via a REST interface

The Gantt Chart is presented in Figure 1. Marked cells indicate the weeks in which they were developed.

Main
Tasks

Weeks

Objectives

Setup

Get acquainted
with the
demonstrator

Study Period

Service
Request

Create XML and
OWL files for
TSMatch's
taxonomy

Create examples
of service
request
descriptions

Discuss changes
to the project

Descriptio
n Parser
Software

Develop
software
component that
validates
descriptions

Integrate
software
component in
TSMatch App

API
Connector
Developm
ent

Develop an API
that directly
receives
service's
requirements

Provide a
Description for
External
Services to
connect to this
API

L Develo
Validation .p
Experiments to
and
. test the
Evaluation
demonstrator

Figure 1: Internship Gantt chart.

1.3. Internship’s Goals

The proposed goals were as follows:

e Goal 1: to develop a parser capable of supporting an improved and automated data matching
between loT Things data (attributes) and loT services.

e Goal 2: to integrate in the parser the capability to handle a large, extended ontology.

e Goal 3:to create an interface (REST) to allow the support of external services on the demonstrator
(TSMatch).

e Goal 4: to validate the developed software, based upon provided use-cases.

1.4. Expected Outcome

Outcome 1, Description Language Models, available via GitLab.
Outcome 2, parser, available via GitLab.

e Qutcome 3, External service interface available via GitLab.
Outcome 4, improved TSMatch demonstrator and demonstration.

TSMatch

Engine

2. Background Work

This section provides information about the overall TSMatch concept and the current TSMatch
demonstrator, as well as background work that has been used for the development of the code during
the internship.

2.1. TSMatch Concept

TSMatch is a software-based framework that, based on IoT Things descriptions, performs similarity

matchmaking to service descriptions, to better support data aggregation. Further information of TSMatch
is available via [11].

2.2. TSMatch Demonstrator

The TSMatch demonstrator is one of the demonstrators of the fortiss llot and is illustrated in Figure 2.
Its server-side component, the TSMatch Engine, is installed on the fortiss [loT gateway, an Intel NUC device
that runs also other services on the Lab: Mosquitto (MQTT broker); PostGresSQL daemon (database), etc.
The client-side of TSMatch currently runs on Android. The demonstrator includes multiple sensors
interconnected to 2 Raspberry Pis.

fortiss

Raspberry Pi

Figure 2: TSMatch demonstrator.

NUC Device

TSMatch

Mobile App

2.3. Service Descriptions and Current Ontology in TSMatch

In TSMatch, services are modelled semantically. Currently, the parser software that has been developed
in this internship relies on two examples of services that have been described by recurring to WSDL 2.0
and OWL-S, both recommended by the W3C [5][9].

An aspect to consider was the capability to add new attributes (new loT Things). For that, one can recur
to different ontologies which are often developed per domain [10]. To simplify our work, we have recurred
to a multiple-domain ontology currently under work in fortiss, lloT. The ontology is being developed based
on an extensive multi-domain taxonomy and follows a tree structure. An asset has been created to model
this proposed cross-domain ontology. Currently, the lower branches include the following attributes:
Domain, Monitoring Aspect and Measurement Type; they are used to classify different properties from
sensors. And the top branches are the words that can be used describe each property (such as
Temperature, Humidity, Velocity and Occupancy). An early version of the cross-domain ontology is shown
in Figure 3.

sumg \I | Healih |
w l/

Logitics g /

\\ Domain

loT sarvice required
infromation taxonomy

Figure 3: Early version of the Ontology for TSMatch inputs.

To understand the development process of the description models and the parser it is necessary to explain
the structure of WSDL and OWL-S. The first one is an XML-based structure with a divided in four elements:
types, interface, binding and service, these elements can contain parameters, such as “name”, “type”,
“element”, and “ref”, which help define them and locate other components that are linked to them in
the file, and are inside a parent element called “description” [6][7].

https://git.fortiss.org/iiot/demonstrator2/-/blob/jorge/api_connector/API_Connector/config/taxonomy.js

Types contains all the data type definitions and element declarations of the service’s parameters, thus the
necessary information about the inputs are contained in this tag. Interface contains the operation’s inputs
and outputs; they have names and references as parameters pointing to elements in the “types” tag that
contain the description of these parameters. Therefore, the first step of the parser software is to locate
all inputs from the service’s “Interface” tag and get their definitions in the pointed elements inside the
“types”. The latter two elements, “binding” and “service”, describe the communication protocols and
structure as well as the location of the endpoint that serves that service, therefore they don’t contain
relevant information for the parser software and therefore have no impact in the description models for
TSMatch. An example of each of those elements is shown in bold inside the WSDL code example 1
illustrated in Figure 4 and extracted from [6].

<types>
<xs:schema
xmlins:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://greath.example.com/2004/schemas/resSvc"
xmlns="http://greath.example.com/2004/schemas/resSvc">
<xs:element name="checkAvailability" type="tCheckAvailability"/>
<xs:complexType name="tCheckAvailability">
<xs:sequence>
<xs:element name="checkinDate" type="xs:date"/>
<xs:element name="checkOutDate" type="xs:date"/>
<xs:element name="roomType" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:element name="checkAvailabilityResponse" type="xs:double"/>
<xs:element name="invalidDataError" type="xs:string"/>
</xs:schema>
</types>

<interface name = "reservationinterface" >
<fault name = "invalidDataFault"
element = "ghns:invalidDataError"/>
<operation name="opCheckAvailability"
pattern="http://www.w3.org/ns/wsdl/in-out"
style="http://www.w3.org/ns/wsdl/style/iri"
wsdlx:safe = "true">
<input messagelabel="In"
element="ghns:checkAvailability" />
<output messagelabel="0ut"
element="ghns:checkAvailabilityResponse" />
<outfault ref="tns:invalidDataFault" messagelLabel="0ut"/>
</operation>
</interface>

<binding name="reservationSOAPBinding"
interface="tns:reservationinterface"
type="http://www.w3.org/ns/wsdl/soap"

wsoap:protocol="http://www.w3.0rg/2003/05/soap/bindings/HTTP/">
<fault ref="tns:invalidDataFault"
wsoap:code="soap:Sender"/>
<operation ref="tns:opCheckAvailability"
wsoap:mep="http://www.w3.0rg/2003/05/soap/mep/soap-response"/>
</binding>
<service name="reservationService"
interface="tns:reservationinterface">
<endpoint name="reservationEndpoint"
binding="tns:reservationSOAPBinding"
address ="http://greath.example.com/2004/reservation"/>
</service>
Figure 4: Code Example 1 — WSDL example.

The structure mentioned is also depicted in Figure 5.

WSOL 1.1 . WSDL20
{doﬂnltbns |description
types
types
message -
M M2 %
portType interface 3 3
operation operation
L nput
|| || B
== 1 5 |
|binding | * |binding || $5
[=
service service ‘ §§
\ port . endpont J o

— —

Figure 5: WSDL'’s structure.

The second description language, OWL-S, follows a similar pattern with changes regarding only how the
software gets the inputs. Unlike WSDL, where the “types” element contains data types that define the
parameters of the service, in OWL-S each parameter is an object that has all its properties defined inside
them. Therefore, after searching for the inputs inside the atomic processes of the file, the parser
afterwards looks for those inputs as individual types themselves, that contain the properties of interest
for TSMatch. The description file models that were created have the same structure of a standard
description file, as mentioned above, but its inputs inside the “types” element follow the taxonomy. Those
files were created for testing purposes and to give external services a better understanding of the
requirements from the TSMatch software and how they can build a valid description file that can be
parsed by the demonstrator.

Two of the taxonomy models created were based on an Environment Monitoring Service that
gives information about the quality of the working environment based on the temperature, humidity, and
occupancy of a target room. That hypothetical service needs to send three requirements to TSMatch, one
for each of the measurement types listed above (temperature, humidity, and occupancy).

Therefore, the “types” and “interface” elements follow the structure shown in code example 2:

<types>
<xsd:import namespace="URL_for_Schema” schemalocation="taxonomy_2.xsd”/>
<xsd:schema elementFormDefault="qualified” attributeFormDefault="qualified”

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema” targetNamespace="URL_for_Schema”>
<!—Start of WSDL Elements =
<xsd:element name="Temperaturelnput”>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="Taxonomy”>
<xsd:element ref="Domain”>
<xsd:element ref="Building-Management”>
<xsd:element name="0ffices” type="xsd:string”/>
</xsd:element>
</xsd:element>
<xsd:element ref="Monitoring-Aspects”>
<xsd:element ref="Places”>
<xsd:element name="0ffices” type="xsd:string”/>
</xsd:element>
</xsd:element>
<xsd:element ref="Measurement-Types”>
<xsd:element ref="Environment”>
<xsd:element name="Temperature” type="xsd:string”/>
</xsd:element>
</xsd:element>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</types>

<interface name="Southboundinterface”>
<operation name="Updates” pattern="http://www.w3.org/ns/wsdl/in-only”
style="http://www.w3.org/ns/wsdl/style/iri”">
<input element="ghns:Temperaturelnput”/>
<input element="ghns:Humiditylnput”/>
<input element="ghns:Occupancylnput”/>
</operation>
</interface>

Figure 6: Code Example 2 — WSDL structure following the ontology developed.

3. Architecture and Implementation Aspects

In this section, all the code details, structure of implementation and guidelines on how and where to
change the software are presented. Therefore, it contains simple explanations and communication

diagrams on the components developed. Figure 7 presents the architecture diagram that provides an
overview of the system, and the developed components are:

e Examples for services, based on specific descriptive language, section 4.1.
e Parser service, currently placed on the TSMatch client as illustrated, section 4.2.
e External Service Interface, described as “API Connector” in Figure 2, section 4.3.

- N

External Consummer loT TSMatch Mobile App
Benkcee
L
)
y
B
API Connector TSMatch Engine
v
loT Things

Figure 7: Architecture Diagram for the demonstrator’s system. The “API Connector” corresponds to the “External Service
Interface”.

Figure 8 illustrates the communication sequence between an external service and an external service
orchestration entity; the TSMatch client (TSMatch Mobile App); The TSMatch Engine; the Parser Software.

External Service Orchestrator TSMatch Mobile App TSMatch Engine Parser Software
Have taxonomy-
based Send URL that . Parses
. Get File from
Description file > points fo »> URL #»| Description
saved in URL Description File File
Repository l
Send Error Validates Service's
Y o |e Inputs according to
lessage <
Service Taxonomy
Send Request
Objects to <
TSMatch
Request
Service to
» Things Objects
Matching
A
Check Result Show Matching Matching
Results and
and Analyze ob y Result and
, servations
Observations . Observation:
from Things

Figure 8: Communication Diagram involving the developed components.

3.1. Service Description Models

Since there are two description languages that this project focus on: WSDL and OWL-S, the first
task of this project was to create descriptive files and schemas to validate the contents of those services
in each of the sub dependencies of those languages, namely XML, RDF, XSD and OWL. These files would
have a basic structure and would model a service for the description models that the demonstrator can
understand.

In the XSD, there are complex type definitions for each of the branches of the taxonomy tree. And in the
OWL file there are three object attributes to classify the main branches of the inputs: “hasDomain” for
domain, “hasMeasurementType” for measurement type, and “hasMonitoringAspect” for monitoring
aspect, which are necessary for the parser. On the latter case, those attributes were created to avoid the
need of three inputs It is possible, however, to understand the input objects also through the description
models created in the internship.

The Service description models were built according to the ontology currently being used in TSMatch and
briefly described in section 3.3. Therefore, changes to the taxonomy structure would imply in changes to
the Description models and their schemas. The schemas, be it the type definitions for WSDL and OWL-S
or the OpenAPI Schema, are the definition of the taxonomy’s data type, in other words, they describe the
values that can be contained in the taxonomy. Any change on the taxonomy would imply in equivalent
changes to the schemas. An example is the OpenAPI schema definition for “Measurement Type” shown
in code example 6.

1. measurementType:
2. type: string

3. enum:

4. - motion

5. - position

6. - environment
7. - energy

8. - mass

9. - biosensor

Code Example 6 — Schema definition for the OpenAPI Specification.

If any new definitions were to be added to “Measurement Type”, they would have to be added to the
Schema above. In addition, if the element name “Measurement Type” is changed, all values that contain
that name in the Schema would require change. Another example of how the taxonomy is used is depicted
in code example 7, in one of the WSLD description models’ “types” definition, it can be seen inside “ref”
and “name” parameters.

1. <xsd:element ref="Taxonomy">

2. <xsd:element ref="Domain">

3. <xsd:element ref="Building-Management">

4. <xsd:element name="Offices" type="xsd:string"/>
5. </xsd:element>

6. </xsd:element>

7. <xsd:element ref="Monitoring-Aspects">

8. <xsd:element ref="Places">

9. <xsd:element name="Offices" type="xsd:string"/>
10. </xsd:element>

11. </xsd:element>

12. <xsd:element ref="Measurement-Types">

13. <xsd:element ref="Motion">

14. <xsd:element name="Occupancy" type="xsd:string"/>
15. </xsd:element>

16. </xsd:element>

17. </xsd:element>

Code Example 7 — Use of Taxonomy inside WSDL file.

3.2. Parser Component

The parser had as requirement to be built on javaScript to be portable, and independent of platform. It
should parse the service description file from consumer services, extract the requirements from those
services, and check if they are aligned with the active ontology(ies), and then sends that information in
TSMatch’s message structure, in other words, the built-in communication structure for messages through
the MQTT broker. Please refer to the parser code in gitlab. To develop the parser, we have recurred to
NodelS !, as it allows for Javascript to be run outside of its environment, e.g., browser. The development
has been done in Windows, Visual Studio IDE. Currently, the parser component is a module that runs on
the TSMatch client; however, it can be run anywhere else.

The TSMatch client currently creates (or obtains) a service description as mentioned. This semantic service
description is parsed and validated based on the ontology defined. For that purpose, a JavaScript object

L https://nodejs.org/en/

https://git.fortiss.org/iiot/demonstrator2/-/blob/jorge/api_connector/TSMatchMobileApp/src/service/ServiceRequestParser.js

created from the XML file that contains the entire ontology structure was included as an asset inside the
software’s structure. Further details can be found in gitlab, on the ontology asset code, currently under
the TSMatch client.

The Parser component has been placed currently in the TSMatch client (currently, developed as an
Android App) and has two main files linked to it: “ServiceRequestParserConfig.js” and
“ServiceRequestParser.js”. Inside the first file there is the ontology object that is received through an XML
file or by filling the object present inside this code. If the taxonomy object inside the
“ServiceRequestParserConfig.js” is used, all changes to the taxonomy must be also included to the
taxonomy object. The latter file contains the method that parses description files and validates the inputs
according to the taxonomy.

Table 1 shows the file structure for the demonstrator containing the Parser Software. All files used by the
Parser software are highlighted in bold.

Table 1: parser software structure.

https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/TSMatchMobileApp/src/config
https://git.fortiss.org/iiot/demonstrator2/-/blob/jorge/api_connector/TSMatchMobileApp/src/service/ServiceRequestParser.js
https://git.fortiss.org/iiot/demonstrator2/-/blob/jorge/api_connector/TSMatchMobileApp/src/service/ServiceRequestParser.js

After the parsing is complete, each of the inputs is validated against the ontology JSON object, checking
the first child object, which will be referred here as (I), of each of the three main components: domain,
monitoring aspects and measurement type, is present in the taxonomy. In case it is, it then proceeds to
check if the next element, hereby called (11), of each of the components mentioned before is contained as
a child of the element (1). As an example, if the value of the child of “measurement type”, which would be
an example of (1), is “environment”, the element of the next child, which would be an example of (ll), must
be a son of “environment” in the taxonomy. This procedure is repeated for each of the inputs present in
the description file in case there are multiple. The code snippet shown next is taken from an input object
that follows the cross-domain proposed ontology:

1. inputObject = {

2. "domain": {

3. "building management": "offices"
4. bo

5. "monitoring aspect": {

6. "places": "offices"

7. by

8. "measurement type": {

9. "environment": "temperature"

10. b,

11. 1}

If all the three attributes of the service are according to the ontology, then the parser creates a request
object to be sent to the TSMatch engine. that follows a structure of the
“INNOVINT/HAMBURG_FACTORY1/REQUEST” MQTT topic that is sent as the “return” variable of the
parser module. If any incorrection is found, another object with the kind of validation error is then sent.
The latter object contains 6 elements: domain, domain detail, monitoring aspect, monitoring aspect
detail, measurement type and feature of interest that are shown only if there is a validation mistake
related to it. It also states which of the inputs from the description file contained that mistake. In a file
with ninputs, “input 1” would be the first input from top to bottom in the “interface” element of the file
and “input n” would be the last.

As an error proofing method, there is a function that turns all the contents of the ontology asset to
lowercase, be it from an external XML file or from the taxonomy object declared inside the software; and
the parser software also transforms every value extracted from the description files to lowercase.
Additionally, since WSDL and OWL-S files do not accept spaces in the names and parameters of its
elements, but only underscores and hyphens, the parser software transforms every hyphen and
underscore contained in those elements into spaces to follow TSMatch’s object structure.

Moreover, as of the composition of this report, TSMatch only recognizes values of the taxonomy where
each word begins in uppercase values. Therefore, if “domain” contains values such as “health” or “Smart
city”, the software would not be able to do the matching, so those values mentioned before should be
sent as “Health” and “Smart City”. Thus, after creating the request object that will be sent to the TSMatch
App, the parser software transforms every letter at the beginning of a word into uppercase.

3.2.1. Detailed Code Description

The parser component is present in the ServiceRequestParser.js file. It exports a class to TSMatch Mobile
APP that Parses description files sent by external services. Its first method, getRequestsFromURL, takes
the URL provided by the consumer service and extracts its content, which should be a file. It then checks
if the file has the correct extensions. If it has a valid extension, it checks if it is OWL-S or WSDL.

In case of WSDL it checks if the file is version 1.0 or 2.0 and if the file contains prefixes or not and extracts
the result, it saves the version of the language and presence or absence of prefixes in four variables called
wsdll, wsdl1Prefix, wsdl2, wsdI2Prefix, that contain values of true or false depending on the condition
met. Afterwards, a variable called version receives the only value among wsdl1, wsdl1Prefix, wsdl2 and
wsdI2Prefix that has a true statement.

If the conditions wsdl1 or wsdl1Prefix are met, the contents are sent to the wsdl1Parsing method. This
method is divided into two parts: parsing and validation. The parsing first checks if the WSDL 1 file has
prefixes or not, by the version variable sent from the getRequestsFromURL method, adds them to the
parsing mechanism if necessary and extracts the file’s content as explained before.

The validation process from the method gets the inputs extracted from the file and compares them to the
ontology located at ServiceRequestParserConfig.js according to the 3 domain attributes that are required

https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/TSMatchMobileApp/src/service
https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/TSMatchMobileApp/src/config

by TSMatch’s Ontology and by the “INNOVINT/HAMBURG_FACTORY1/REQUEST” topic’s message

n u

structure. These elements are “domain”, “monitoringAspect” and “measurementType”.

If the conditions wsdI2 or wsdI2Prefix are met, the contents are sent to the wsdl2Parsing method. The
difference of the wsdl2Parsing and wsdl1Parsing methods are how the files are parsed due to differences
in their structure. Basically, WSDL version 1 has one extra attribute called “message”, that must be
referenced between “interface” and “types” attributes. The validation process is the same for both.

If the file is OWL-S no condition is met in the getRequestsFromURL method and the contents extracted
from the URL are sent to the owlParsing method. Similarly to the two methods above, it first parses the
file to extract the inputs according to the OWL-S structure explained in 2.2.1 and then validates them.
However, for OWL-S there is a taxonomy prefix linked to the inputs that was explained in chapter 2.2 that
must be checked before validation.

Currently, due to requirements of TSMatch, there is a method called titleCase that transforms the first
letter of every word in the request sent to TSMatch Mobile App into Uppercase. This method is called
after validating every input from the description files in all three methods explained above: wsdl1Parsing,
wsdl2Parsing and owlParsing.

3.2.2. How to Run

The parser component is currently installed on the TSMatch client, for which a mobile App has been
developed by fortiss. The GUI is illustrated in Figure 9. Currently, the client can get a service description
from an URL. The file can be contained in a registry or inside the web service’s URL domain.

Describe Describe

Figure 9: TSMatch client developed for Android.

The entered URL is sent to the Parser component, that fetches the file from the URL, parses it, validates
its contents according to the taxonomy and generates TSMatch’s request object in the format of the topic
“INNOVINT/HAMBURG_FACTORY1/REQUEST”. The request object structure is shown in code example
8.

1. var requestObject = {

2. "featureOfInterest": "",

3. "unitOfMeasurement": "unit",
4. "threshold": "30",

5. "creatorId": "FORTISS_I IOTLAB DESCRI PTION_PARSER" ,
6. "location": "Per-room",

7. "yuid": uwuid.v4 (),

8. "domain": "",

9. "domainDetail": "",

10. "monitoringAspect": "",

11. "monitoringAspectDetail": ""
12, };

Code Example 8 — Request object structure for TSMatch Request topic.

3.2.3. Limitations

There are three methods in the Parser software that use the message structure of the
“INNOVINT/HAMBURG_FACTORY1/REQUEST” topic, they are: “wsdl1Parsing”, “wsdI2Parsing”, and
“owlParsing”. If any changes are made to that topic’s message structure, the global object variable named
“requestObject” must be changed to follow the new structure.

Moreover, there are 3 elements in the taxonomy structure that are used in the Parser, they are: “domain”,
“monitoring aspect”, and “measurement type”. If those name definitions are changed in the taxonomy or
if the ontology is extended, their respective changes and the addition of elements must be included

throughout all the Validation Process of the “wsdl1Parsing”, “wsdI2Parsing” and “owlParsing” methods.
Examples of lines of code where changes would be necessary are shown in code example 9.

318 inputs[i][j][O].replace(/ |-/g, ' ").toLowerCase().trim() === "domain’

319 if (inputs[i][j][1].replace(/ |-/g, "' ").toLowerCase().trim() in config['taxonomy']['domain’])
320 request["domain"] = inputs[i][j][1].replace(/_|-/g, ' ').toLowerCase().trim();

321 let element = config['taxonomy']['domain’][request["domain"]];

Code Example 9 — Example of lines of code that would need changing.

The lines of code above use the “domain” tag from TSMatch’s taxonomy and “domainDetail” from the
request object structure. In addition, the equivalent lines for “monitoring aspect” and “measurement
type” for the taxonomy, and “monitoringAspectDetail” and “featureOfinterest” for the request object
would also need to be changed accordingly.

|II

3.3. External Service Interface (ESI)

To allow for scalability and the interconnection of external services, we have developed an “External
Service Interface”?, based on REST. This interface receives HTTP messages from external services
containing their requirements, manages the communication between the services and the TSMatch API,
and provides an OpenAPI YAML description so services can more easily communicate with it. OpenAPl is
a description language for REST interfaces created by Swagger, it follows a JSON or YAML structure, two
of the most used, and it’s simpler to understand for humans when compared to WSDL or OWL-S, which
makes it easier to be implemented and used. Table 2 shows the file structure of the External Service
interface component.

Table 2: External Service Interface code structure.

API_Connector.
|— config

|— API_connector_parameters.js - Parameters for the API app

— mqtt_parameters.js - Parameters for the MQTT communication

— observation_parameters.js - Parameters for the WebSocket app

L— taxonomy.js - Taxonomy JavaScript object
|— Dockerfile - Docker image configurations
— Index.js - Main file, starts AP1 and WebSocket apps
— models

— description.js - Validation class for requests coming from the
client service

L— mqtt_client.js - MQTT class for stablishing connection,
publishing and deleting requests on TSMatch
— observation_server

L— index.js - WebSocket class to configure the server and
communication with TSMatch and client services
|— routes

L— index.js - HTTP app, defining POST and DELETE methods and
communication with MQTT broker

2 The external service interface is currently bamed as API connector. However, this will be changed.

https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/API_Connector
https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/API_Connector
https://git.fortiss.org/iiot/demonstrator2/-/blob/jorge/api_connector/API_Connector/specification/specification.yaml

— specification

— specification.json - OpenAPI Specification for the API_Connector in json
format

L— specification.yaml - OpenAPI Specification for the AP1_Connector in yaml
format
L— start_connector_api.sh - API_Connector docker image runner

Moreover, Figure 10 illustrates the communication sequence between an external service and TSMatch,
via this interface.

External Service External Service Interface TSMatch Engine

Matching
Result

Observations| ||

Receive and

Analyze
Observations

Figure 10: Communication Diagram for the APl Connector.

Similarly to the parser component, the ESI needs to validate request elements according to the cross-
domain ontology adopted, they should not distinguish uppercase from lowercase letters. The ontology is
currently contained as an asset inside the software that can be imported from an XML file or filled as a
JavaScript object. Consequently, as an error proofing method, there is a function that turns all the
contents of the taxonomy asset to lowercase, be it from an external XML file or from the taxonomy object
declared inside the software; and the parser software also transforms every value extracted from the
service’s request message to lowercase.

The HTTP connector was built using the Express library from Nodejs and was implemented in the port
3003 of the IloT gateway. This connector has two path routes: “/openapifallrequests” and
“/openapi/request”. The first path can receive a DELETE message that deletes all previous requests made

https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/API_Connector/config
https://git.fortiss.org/iiot/demonstrator2/-/blob/jorge/api_connector/API_Connector/routes/index.js

by the APl connector from the demonstrator. The latter path can receive a DELETE message that contains
the uuid of a specific request as a path parameter, the request that had that uuid is then deleted from the
database. Both DELETE requests mentioned above use the
“INNOVINT/HAMBURG_FACTORY1/DELETE_REQUEST” TSMatch MQTT topic for the deletion procedure.

The “/openapi/request” path can also receive a POST message where the POST body should be a JSON
object following the structure (Ill) explained above, it sends that body to the previously mentioned
method and, if no validation error is received, subscribes the return value in the
“INNOVINT/HAMBURG_FACTORY1/REQUEST”. The connector waits for a response from the MQTT
broker’s “INNOVINT/RESPONSE/NDATA/TSMATCH_INNOVINT_1” topic for up to 5 seconds that is sent
back to the consumer service.

In case the message received from the broker states that the matching was not possible, that message is
forwarded to the external service without modifications. Nevertheless, if the message informs a successful
matching, the connector adds one additional parameter to the response object, containing the path to a
WebSocket inside the connector component that the external service should connect to for receiving the
observations from the matching result.

This WebSocket was implemented in the port 3004 of the fortiss lloT gateway and has the function of
keeping a two-way communication between TSMatch and the external services that are receiving
observations from successful matchings. It broadcasts information from all observations received from
the “INNOVINT/OBSERVATION/NDATA/TSMATCH_INNOVINT_1” topic in the WebSocket connection if
there is at least one requester service connected to it.

3.3.1. Detailed Code Description

The ESI code contains an index.js file that initializes all its application components, which are the HTTP
APl and the WebSocket. It contains two specification files in JSON and YAML formats. This component also
has a configuration folder called config where the REST parameters, the MQTT communication
parameters, the WebSocket parameters, the taxonomy object and the ontology importer are located,
respectively in the APl _connector_parameters.js, mqtt_parameters.js, observation_parameters.js,
taxonomy.js and XML Taxonomy_reader.js files.

This component contains a folder called models where both the validation method and the MQTT _client
connection are setup, both located at The validation method is in the description.js file and is contained
inside a class called Description. This class has a constructor with the same structure as the request body
from the POST messages sent by external clients, explained in section 2.4.1, that receives these messages
and passes them to the generateRequestObject method. This latter method gets the requests, validates
them the same as done in the wsdl1Parsing and wsdl2Parsing methods explained above and creates a
request in the “INNOVINT/HAMBURG_FACTORY1/REQUEST” topic’s message structure.

The MQTT client connection and communication methods from the External Service Interface and the
TSMatch broker is defined as a class called MQTTClient in the mqtt_client.js file. It uses the connection
parameters from the config folder to create an MQTT connection, and in its constructor defines all topics
that need subscription when the connection is stablished. It has three methods called connect, request,
and delete that connect to the broker, create requests to it and delete requests sent to it, respectively.

https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/API_Connector/observation_server
https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/API_Connector/observation_server
https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/API_Connector/specification
https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/API_Connector/config
https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/API_Connector/config
https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/API_Connector/models

The HTTP APl is in the routes folder’s index.js. Inside it has 6 global variables related to the communication
with the MQTT broker: the array variable defines a global array that saves payloads from messages
received from the broker; the resp variable defines a global response object to check for HTTP messages;
n and count variables are currently not used but they define a maximum number of messages to wait for
from the broker before resetting the array variable and counts the number of messages already sent,
respectivelly; the timer and timeOutValue variables are global definitions to wait for messages from the
broker before closing the HTTP connection; and the uuidList is an array that saves uuid from messages
sent from the connector.

Afterwards, a connection is created with the MQTT broker by calling the MQTTClient class and all the
procedures to be taken when a message is received are defined inside the
connection.client.on(‘message’, ...) function. The latter function checks if the matching was successful via
the INNOVINT/RESPONSE/NDATA/TSMATCH_INNOVINT_1 topic, if the message contains a requestid
parameter the matching was successful, otherwise it failed. It proceeds to check if the response message
is linked to a request sent from the connector API by checking if the object’s id is contained in the uuidList
array. If all conditions are met the response message is sent back to the external service with a redirect
parameter to the WebSocket.

Then, an HTTP APl is created at port 3003 and has three “routes” as explained: a POST to
“/openapi/request”, a DELETE to “/openapi/request”’, and a DELETE to “/openapi/allrequests”. The
POST uses the request body sent from the external service to create a Description class instance. In case
the object wasn’t validated it sends the error message back to the client, and in case it was validated it
saves the generated uuid in the uuidList array and publishes the request in the MQTT topic called
“INNOVINT/HAMBURG_FACTORY1/REQUEST”. The DELETE to “/openapi/request” receives an id as a
path parameter, publishes a delete request for that id and extracts that uuid value from the uuidList array.
The DELETE to “/openapi/allrequests” uses all the uuid inside the uuidList array to send delete requests
for every single one of them.

The WebSocket is setup in the observation_server folder’s index.js. It creates a WebSocket server in port
3004 that connects to MQTT broker and sends a response header once a client is connected to it. This
server broadcasts observations from TSMatch’s successful matching received from the
“INNOVINT/OBSERVATION/NDATA/TSMATCH_INNOVINT_1” topic.

Currently, there is no distinction in messages sent to each client, instead they are broadcasted to every
client connected to the WebSocket. To create a more secure connection the uuid of each client could be
sent as a parameter in the WebSocket’s path that can be read by the path, uuid, and metadata variables
already defined in the WebSocket’s code. Afterwards each message can be sent separately to each client
using their unique id or encrypted according to the uuid so that only the service related to that uuid can
decrypt the message’s contents.

The External Service Interface also contains a Dockerfile with its docker image configurations and a

start_connector api.sh file that runs the Docker image.

3.3.2. How to Run

The external service interface needs to be started independently with the following :

~/.> cd API_Connector

https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/API_Connector/routes
https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/API_Connector/observation_server
https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/API_Connector
https://git.fortiss.org/iiot/demonstrator2/-/tree/jorge/api_connector/API_Connector

~/.> chmod +x start_api_connector.sh

~/.> .[start_api_connector.s

To use the External Service Interface, the external service, via the current TSMatch client, needs to
connect to the TSMatch engine, running via IP:port 10.0.33.39:3003.

To send requests to TSMatch, first a POST message must be sent to the “/openapi/request” path with
the request body containing the JSON object with the structure shown in code example 11, filled with
string values from the ontology.

{
“domain”: 7,
“domainDetail”: “”,
“monitoringAspect”: «”,
“monitoringAspectDetail”: «”,
“measurementType”: «”,
“featureOfInterest™: «”,

3

Code Example 11 — Request body containing the JSON object structure

Once a request is validated against the ontology format, the ESI wraps the service’s requirements in the
“INNOVINT/HAMBURG_FACTORY1/REQUEST” topic’s message structure and publishes it to the MQTT
broker. The ESI waits up to five seconds for a response from the broker.

After a response connected to the request previously sent is received from the
“INNOVINT/RESPONSE/NDATA/TSMATCH_INNOVINT_1” topic, the ESI checks if the matching was
successful. In case of failure, the response is directly forwarded back to the external service. In case of
success, the path 10.0.33.39:3004 to tshe WebSocket is added to the response and sent back to the
TSMatch client.

Once the external service connects to the WebSocket, it will constantly receive all observations
sent by the “INNOVINT/OBSERVATION/NDATA/TSMATCH_INNOVINT_1” topic from the MQTT broker.

3.3.3. Dealing with changes to the TSMatch Structure and to the

Taxonomy
In the APl Connector, there are methods that use the message structure of the following topics:

“INNOVINT/HAMBURG_FACTORY1/REQUEST”, hereby called (1).
“INNOVINT/HAMBURG_FACTORY1/DELETE_REQUEST”, hereby called (2).
“INNOVINT/RESPONSE/NDATA/TSMATCH_INNOVINT_1”, hereby called (3).
“INNOVINT/OBSERVATION/NDATA/TSMATCH_INNOVINT_1”, hereby called (4).

If changes are made to topic (1), the “request” variable in “generateRequestObject” method inside
“models/description.js” file will have to change accordingly. If changes are made to topic (2), the “newld”
variables in both DELETE methods from “routes/index.js” will have to change accordingly.

Changes regarding topic (3) will imply in modifications to the “connection.client.on(‘message’, ...)”
function that receives messages from the MQTT broker. It currently uses the object keys “requestlid” and
“grouping”, present it topic (3) message structure to identify if the matching was successful and if the
response is linked to a request from the APl Connector, respectively. Topic (4) simply sends the
observations directly to connected client services and requires no changes.

In similarity to the Parser Software, there are 3 elements in the taxonomy structure that are used in the
APl Connector, they are: “domain”, “monitoring aspect”, and “measurement type”. If those name
definitions are changed in the taxonomy or if the ontology is extended, their respective changes and the
addition of elements must be included in the Validation Process of the “generateRequestObject” method
inside “models/description.js” file. Examples of lines of code where modifications would be necessary
are present in the transcript inside code example 12.

132 if(this.measurementType.toLowerCase().trim() in config['taxonomy'|['measurement type'])

{

133 let element = config['taxonomy']['measurement
type'][this.measurementType.toLowerCase().trim()];

135 if(typeof(element[Object.keys(element)[0]]) != 'object’) {
136 if(element.includes(this.featureOfinterest.toLowerCase().trim())){
137 request["featureOfInterest”] = this.featureOfInterest.toLowerCase().trim();

Code Example 12 - Lines of code that would require modifications.

The lines of code above use the “measurement type” tag from TSMatch’s taxonomy and
“featureOfinterest” for the request object structure. In addition, the equivalent lines for “monitoring
aspect” and “domain” for the taxonomy, and for “monitoringAspectDetail” and “domainDetail” for the
request object would also need to be changed accordingly.

|”

4. Summary and Next Steps

This work describes different components that have been developed to extend the TSMatch
demonstrator of fortiss. The internship project had three main tasks: i) creation of semantic descriptions
based on specific languages; ii) development of a parser component capable of checking the service
descriptions against a specific ontology; iii) development of an interface (HTTP) to interconnect TSMatch
to external services with an OpenAPI specification to handle communication with services that wish to
provide their requirements through HTTP.

Further implementations on the software created during this internship could include: improving the
parser by adding synonym and typing error recognition; adding data security to the WebSocket interface
inside the APl Connector by assigning an uuid to each client connection and send observations back only
to the client whose request is linked to that observation; using the same taxonomy structure for all
components of the demonstrator, currently the App, the Engine and the API have different versions of
the taxonomy; improving the current taxonomy; and adding a general ontology validation method that
works for other ontologies. However, the latter suggestion would imply in equivalent changes in the
TSMatch APl and in the Mobile App, since the topic’s communication structure used in the MQTT
communication require parameters that are linked to the TSMatch ontology, such as “domain”,

n

“monitoring aspect”, “monitoring aspect detail”, “measurement type”, and “measurement type detail”.

5. References

[1] Jia, Bing, Wuyungerile Li, and Tao Zhou. "A centralized service discovery algorithm via multi-stage
semantic service matching in internet of things." In 2017 IEEE International Conference on
Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and
Ubiquitous Computing (EUC), vol. 1, pp. 422-427. |EEE, 2017.

[2] Kolbe, Niklas, Jérémy Robert, Sylvain Kubler, and Yves Le Traon. "Proficient: Productivity tool for
semantic interoperability in an open iot ecosystem." In Proceedings of the 14th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pp. 116-125.
2017.

[3] Palavalli, Amarnath, Durgaprasad Karri, and Swarnalatha Pasupuleti. "Semantic internet of things." In
2016 IEEE Tenth International Conference on Semantic Computing (ICSC), pp. 91-95. IEEE, 2016.

[4] SWAGGER. OpenAPl Specification. Available at (consulted in November 2021):
https://swagger.io/specification/

[5] Martin, David, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott, Sheila Mcllraith, Srini
Narayanan et al. "OWL-S: Semantic markup for web services." W3C member submission 22, no. 4
(2004).

[6] Booth, David, and Canyang Kevin Liu. "Web services description language (WSDL) version 2.0 part O:
Primer." W3C recommendation 26 (2007): 39-41.

[7] Chinnici, Roberto, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weerawarana. "Web services
description language (wsdl) version 2.0 part 1: Core language." W3Crecommendation 26, no. 1 (2007):
19.

[8] Nitzsche, Jorg, Tammo Van Lessen, and Frank Leymann. "WSDL 2.0 message exchange patterns:
limitations and opportunities." In 2008 Third International Conference on Internet and Web
Applications and Services, pp. 168-173. IEEE, 2008.

[9] Christensen, Erik, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. "Web services
description language (WSDL) 1.1." (2001).

[10]Rozsa, Vitor, Marta Denisczwicz, Moisés Lima Dutra, Parisa Ghodous, Catarina Ferreira da Silva, Nader
Moayeri, Frédérique Biennier, and Nicolas Figay. "An Application Domain-Based Taxonomy for loT
Sensors." In ISPE te, pp. 249-258. 2016.

[11]Bnouhanna, Nisrine, Rute C. Sofia, and Alexander Pretschner. "loT Thing To Service Semantic
Matching." In 2021 IEEE International Conference on Pervasive Computing and Communications
Workshops and other Affiliated Events (PerCom Workshops), pp. 418-419. |IEEE, 2021.

[12] E. Karabulut, N. Bnouhanna, R. C. Sofia. ML-Based Data Classification and Data Aggregation on
the Edge. Poster, student workshop, CONEXT2021. December 2021.

https://swagger.io/specification/

