
DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

ML-based Data Classification and Data
Aggregation on the Edge

Erkan Karabulut

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

ML-based Data Classification and Data
Aggregation on the Edge

Edge-basierte Datenklassifikation und
Datenaggregration durch maschinelles

Lernen

Author: Erkan Karabulut
Supervisor: Prof. Dr.-Ing. Jörg Ott
Advisor: Prof. Dr. Rute C. Sofia (fortiss GmbH)
Submission Date: 16.05.2022

I confirm that this master’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 16.05.2022 Erkan Karabulut

Acknowledgments

First of all, I would like to thank my advisor Professor Rute C. Sofia for supporting
me in every step of the dissertation development and writing process. I was very
lucky to work with her side by side and I’ve learned enormously about the world of
Internet of Things and research in general in such a short time. This thesis would
not have been possible without her help and support.

I would like to thank Professor Jörg Ott for accepting me as his thesis student, and
guiding me during this journey. Without his support, I would not be able to reach
this point.

My former colleague Nisrine Bnouhanna whom I worked for 1.5 years together
was the person who inspired me to work on Internet of Things and to be a researcher
since the beginning. It was highly educative and fun for me to do brainstorming with
her. I sincerely appreciate her support and patience while teaching me things about
research and Internet of Things.

Lastly, I would like to thank all of my colleagues in fortiss Industrial Internet of
Things team, who have done whatever they can to help me when I am frustrated
or stuck at some point. I consider myself extremely fortunate to be part of this
wonderful team.

Abstract

A key challenge in the context of Internet of Things (IoT) that remains to be solved
is the lack of interoperability between cyber-physical systems offered by different
vendors. An ever increasing number of active IoT devices increases the interoper-
ability problem, considering large-scale sensing infrastructures, where devices from
different vendors are usually applied. In such environments, each vendor introduces
its own platform to manage devices and data; therefore, integration of multiple
platforms is always required with a heavy level of manual intervention. The required
level of intervention can be reduced by considering standardised semantic models to
describe sensors and data, that, if used by most vendors, can improve interoperabil-
ity. Standards such as Web of Things (WoT) or One Data Model (OneDM) Semantic
Definition Format (SDF) enable us to describe an IoT device semantically and are
widely adopted to increase interoperability. Still, there are differences in terms of
semantic information models applied by vendors, e.g., due to specific regulation
across domains, or specific requirements from the vendor platform. For instance,
sensors offered by different vendors and measuring a specific type of measurement
data, e.g., temperature, often have a different attribute, e.g., "temp" and "tempera-
ture". Moreover, IoT services are also described by semantic models, often derived
from standards, e.g., ETSI SAREF. A way to improve interoperability is to consider
a semantic matchmaking approach that can, in a semi-automated way, provide a
finer-grained matchmaking between IoT semantic descriptions, Thing Descriptions,
and semantic IoT service descriptions, considering an ontological-based approach.
In our proposal, each Thing Description (TD), after data cleaning (pre-processing), is
categorized and matched onto ontology aggregation points (centroids of a graph),
based on a centrality measure derived from semantic similarity. The output is an
aggregated TD. When a service request is processed, the aggregated TD is matched
to the service (matchmaking), and the averaged measurement is provided as result
to the service. To better understand which type of matchmaking to consider, this
dissertation evaluates three different semantic similarity algorithms for the proposed
matchmaking process, on various far Edge devices. Evaluation results showed that
semantic matchmaking can be performed in milliseconds on an average level Edge
device, with a promising accuracy level even with a general purpose semantic dataset.
The contributions of this dissertation are three-fold: i) specification of the software

iv

Abstract

architecture for semantic matchmaking; ii) implementation of the proposed concept
based on the fortiss TSMatch open-source software and demonstrator (TRL6); iii)
performance evaluation of a semantic text similarity approach and two Machine
Learning (ML)-based algorithms to support the semantic matchmaking.

v

Contents

Acknowledgments iii

Abstract iv

List of Tables viii

List of Figures ix

1. Introduction 1
1.1. Motivation and Goals . 1
1.2. Research Questions . 3
1.3. Activities and Roadmap . 3
1.4. Dissertation Scope . 4

2. State of the Art 6
2.1. IoT Things Descriptions . 6
2.2. Semantic Matchmaking Approaches . 7
2.3. ML in far Edge devices . 10
2.4. Tooling . 13

2.4.1. Data Sets . 13
2.4.2. TSMatch: Thing to Service Matching Middleware 14
2.4.3. Auxiliary Libraries and Other Tools 15

3. Use-case 16

4. Architectural Design 18
4.1. Setup phase . 19

4.1.1. Ontology Interface . 19
4.2. Runtime phase . 22

4.2.1. Data Pre-processing . 22
4.3. Data pre-processing . 22
4.4. Semantic Matchmaking Algorithms . 23

4.4.1. LEX-DB: Sentence Similarity . 25
4.4.2. W2VEC: NLP and Word Embeddings 25

vi

Contents

4.4.3. k-Means: Clustering . 28
4.5. Data Aggregation . 29

5. Implementation 31
5.1. Use-case Setup: fortiss IIoT Lab . 31

5.1.1. Hardware Equipment . 31
5.1.2. Software . 31

5.2. Ontology Interface . 32
5.3. TD to Ontology Matching . 33
5.4. Data Aggregation . 33
5.5. Data Flow . 34

6. Performance Evaluation 37
6.1. Evaluation Plan and Experimental Settings 37
6.2. Datasets . 37

6.2.1. TD Dataset . 37
6.2.2. Ontology Dataset . 38
6.2.3. Training and Testing Datasets . 38
6.2.4. Baseline Testing Dataset . 39
6.2.5. Word Vector Training Dataset . 39

6.3. Results, Performance Comparison of Similarity Approaches 40
6.3.1. Similarity Threshold Impact on W2VEC 40
6.3.2. Similarity Threshold Impact on K-Means 46
6.3.3. Threshold Impact Analysis Summary 49
6.3.4. Algorithm Accuracy Analysis . 50

6.4. Node Usage Analysis . 55

7. Key Findings 58

8. Conclusions and Future Work 60

A. Bibliography 61

B. TD to Ontology Element Matching Algorithm 64

C. Source Code Documentation 66

vii

List of Tables

2.1. List of the analysed semantic matchmaking related work. 8
2.2. Comparison of ML/DL frameworks and libraries 12

4.1. Coverage of word vectors of different sizes. 26

6.1. Size and accuracy comparison for word vector subsets of different sizes. 40
6.2. Settings for each tested algorithm. 41
6.3. Impact, key and value threshold, accuracy of W2VEC-300k. 42
6.4. Impact of key and value threshold finer.grain values on the accuracy of

W2VEC-300k. 43
6.5. Impact, key and value thresholds, W2VEC-1k. 44
6.6. Impact, key and value thresholds, finer-grained approach, W2VEC-1k. 45
6.7. Impact, key and value thresholds, K-MEANS-300k accuracy. 46
6.8. Impact, key and value thresholds finer-grained values, K-MEANS-300k

accuracy. 47
6.9. Impact, key and value thresholds, K-MEANS-1k accuracy. 48
6.10.Impact, key and value thresholds, finer-grained values, K-MEANS-1k

accuracy. 49
6.11.Summary, best performing key and value thresholds. 49
6.12.Accuracy of LEX-DB. 50
6.13.Accuracy of W2VEC. 51
6.14.Accuracy of W2VEC-300k. 51
6.15.Accuracy of W2VEC-1K. 51
6.16.Accuracy of K-MEANS-TD. 51
6.17.Accuracy of K-MEANS-300K. 52
6.18.Accuracy of K-MEANS-1K. 52
6.19.Hardware details and operating system of each testing device. 55
6.20.Node usage analysis results for TESTING1. 56
6.21.Node usage analysis for C-TESTING. 57

viii

List of Figures

1.1. A simple example of the IoT interoperability issue in a smart facility. . 2
1.2. A Gantt chart showing the estimated start and end time for each of the

activities. 4

2.1. Components of the Things to Service Matching (TSMatch) demonstrator
in fortiss IIoT Lab. Image is taken from [6] 13

2.2. Partial graph representation of the FIESTA-IoT Ontology that shows
some of the category elements for quantity kind. 14

3.1. A smart facility with various sensing devices and the semantic match-
making engine deployed on the edge. 17

4.1. The proposed architecture diagram together with other components of
the TSMatch . 18

4.2. A diagram showing the ontology data import process. 20
4.3. A visualization of FIESTA-IoT ontology nodes showing the aggregation

(centralized) points. Visualization is created using Neo4j browser. . . . 21
4.4. A diagram showing the data pre-processing steps. 23
4.5. Part of a TD from [25]. 24
4.6. An example service request that includes elements from FIESTA-IoT

ontology. 30

5.1. A diagram showing the messages exchanged during a new ontology
import. 35

5.2. A diagram showing the messages exchanged when a new IoT device is
discovered. 36

5.3. A diagram showing the messages exchanged when a new service request
arrived. 36

6.1. Accuracy for category QK. 52
6.2. Accuracy for category Unit. 53
6.3. Accuracy for category SD. 53
6.4. Total accuracy. 54

ix

1. Introduction

1.1. Motivation and Goals

The number of deployed IoT devices has already reached the level of tens of billions
and it is expected to be around 30 billion by 2025 1. IoT devices are data producers
that are interconnected to IoT platforms, where then raw data is analysed and
processed. The integration of these devices is often done in proprietary platforms
and therefore, the semantic description of the devices and of their measurement
attributes is often based on vendor models, and specific vendor-based ontologies. In
large-scale sensing environments, there are usually sensors and IoT platforms that
are provided by different vendors. Interoperability usually requires a high degree of
human intervention and therefore, over the last decades, there has been a continuous
effort to achieve interoperability at a protocolar level and also at a device description
level. This is supported by semantic technologies and standards.

For the specific aspect of semantically describing devices, the WoT architecture
proposes a Things Description (TD)2, i.e., a semantic representation of devices. Via
semantic description standards, each vendor can specify aspects such as type of
data, measurement unitn. However, the reality is that vendors still rely on specific
semantic models (also known as information models) to described devices.

Following the attempt to create a higher degree of automation in IoT systems,
IoT services (see definition 1.1.1) provided by IoT platforms (e.g., environmental
monitoring) can also be described by semantic models that vendors provide.

Definition 1.1.1 (IoT Service). A piece of software that uses data from an IoT
sensing infrastructure in order to perform a specific operation or set of operations,
e.g., a service that outputs temperate per room using temperature measurements
from sensors placed in each room.

Figure 1.1 provides a high-level illustration of this situation. There are 2 tem-
perature sensors that are defined differently as "temperature sensor" and "temp".
The first sensor measures environment temperature in room A and the second one

1https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
2https://www.w3.org/TR/wot-thing-description/

1

1. Introduction

measures temperature of an industrial machine that is placed in Room B. The IoT
platform, that collects raw data and processes it to provide answers to service re-
quests, isn’t capable of understanding which specific sensor to rely upon, unless this
configuration is manually provided. This is inefficient, error prone, and eventually
unfeasible, assuming that there are thousands of sensors and ever-changing service
requirements. Another example is the contact sensor which can be used for different
purposes according to where it is placed, e.g., on a door or window. The measurement
units or sensitivity of measurements can also cause an interoperability issue.

Figure 1.1.: A simple example of the IoT interoperability issue in a smart facility.

Adding to this problem, there are multiple semantic standards that can be applied.
Besides WoT TD, other semantic standards quite used to described IoT devices are
the Open Geospatial Consortium (OGC) SensorThings API Sensing part3 and the
OneDM SDF4. Therefore, different vendors apply different standards.

A potential way to reduce the interoperability problem is to consider semi-automated
ways to perform matchmaking of IoT Things Descriptions to IoT service semantic
descriptions, considering a way also to integrate any existing ontology (see definition
1.1.2), and not just ontologies that are vendor-based, or domain-based.

Definition 1.1.2 (Ontology - W3C). An ontology defines the terms used to describe
and represent an area of knowledge.5

This is the core focus of the proposed dissertation. This work assumes that each IoT
device and IoT services can be semantically described. It also assumes that ontologies
are available and can be used as a part of the semi-automated matchmaking process,

3https://docs.ogc.org/is/18-088/18-088.html
4https://onedm.org/sdflanguage/
5https://www.w3.org/TR/webont-req/#onto-def

2

1. Introduction

to allow performing matchmaking between the IoT device descriptions and the
service descriptions.

The dissertation proposes, implements, and assesses (based upon an existing
testbed, Technology Readiness level 6) the proposed semi-automated matchmaking
concept between IoT Things and service descriptions.

1.2. Research Questions

The need for a semi-automated matchmaking algorithm, and which solutions may
provide the best performance can be formulated based on the following research
questions:

• RQ1: Which functional blocks are required to support a semi-automated match-
making process between IoT TDs and service descriptions?

• RQ2: How to define similarity thresholds that are adequate for the semantic
matchmaking process?

• RQ3: Which approaches can be employed to support an ontology-based seman-
tic matchmaking process, and can ML improve the semantic matchmaking?

• RQ4: Which approaches can be employed to support an ontology-based seman-
tic matchmaking process, and can ML improve the semantic matchmaking in
comparison to the usual word similarity approach? For how much?

1.3. Activities and Roadmap

A list of activities that are performed to answer the research questions given in pre-
vious section including the conceptual development, implementation and evaluation
of the proposed approach are given below together with a Gantt chart in figure 1.2:

1. Analysis of state-of-the-art literature: Investigate semantic similarity metrics,
select a subset of them based on a set of predefined criterion and compare
ML-based approaches (accuracy and also node usage aspects, and open-source
support) to be considered during the dissertation development.

2. Semantic matchmaking concept development: Develop a concept that uses the
previously selected similarity heuristics and tools to do semantic matchmaking
of IoT Things to services.

3

1. Introduction

3. Implementation:Implement the proposed concept on the fortiss open-source
IIoT Lab, within the tool TSMatch (Thing to Service Matchmaking).

4. Evaluation: Evaluate the selected approaches based on matchmaking accuracy,
running time and peak memory usage.

5. Documentation: Document the source code and write the dissertation.

Figure 1.2.: A Gantt chart showing the estimated start and end time for each of the
activities.

1.4. Dissertation Scope

The remainder of this dissertation is organized as follows. Chapter 2 describes the
analysis of state of the art that has been carrried out to provide initial answers to
the research questions; assess which proposals are being used to support semantic
matchmaking; analyse tools to use in the dissertation. Chapter 3 describes an exem-
plar use-case that allowed us to derive assumptions and requirements, and better
define the development of the dissertation. Chapter 4.1 describes the semantic
matchmaking mechanism architecture proposed, its functional blocks and interfaces.
Chapter 5 is dedicated to the implementation of the proposed software architecture.

4

1. Introduction

Chapter 6 describes the performance evaluation carried out via experiments devel-
oped on a realistic testbed (TRL6). Chapter 7 explains the results achieved deriving
key findings. Chapter 8 concludes the dissertation and proposes directions for future
work. Annex 1 provides a description of the algorithm to match IoT TDs to ontologies,
while Annex C provides the source code structure.

5

2. State of the Art

During the first phase of work, and in order to look for some answers concerning the
proposed research questions, a first activity carried out related with an analysis of
related work on the following areas:

• IoT Descriptions.

• Semantic Matchmaking approaches.

• ML algorithms to support semantic matchmaking on Edge devices

• Tooling.

2.1. IoT Things Descriptions

As described before, IoT devices and services recur to semantic descriptions to
improve interoperability.

Definition 2.1.1 (Web of Things Thing Description (WoT TD)). An information model
by World Wide Web (W3C) that describes an IoT device, its attributes, meta-data,
interfaces and overall properties. The WoT TD format can be used together with
iotschema as optional semantic markup1 and also quite flexible. It allows TDs to be
enriched, if required, with additional meta-data.

WoT Profile enables creating mechanisms that aims to obtain out-of-the-box inter-
operability among things and devices2 that fit to a same profile. As part of a Profile,
an information model can be defined with additional limitations such as mandatory
fields, constraints, data types and formats [11].

OGC SensorThings API3 provides sensing functionality that describes various
sensing entities and their properties. SDF4 is another description format that aims
to increase interoperability in and across IoT networks.

1https://iot.mozilla.org/schemas/
2https://www.w3.org/TR/wot-profile/
3https://docs.ogc.org/is/18-088/18-088.html
4https://onedm.org/sdflanguage/

6

2. State of the Art

WoT Web Thing Model (WTM)5 defines a model and set of requirements for a Web
API that needs be satisfied when using WoT in order to increase interoperability
among Things at communication protocol level. Some such requirements are support-
ing GET, POST, PUT and DELETE HTTP verbs or implementing WebSocket protocol.
There are many open source implementations that satisfy the given requirements [24]
by enabling retrieval and update of TDs, their properties and models operations.

2.2. Semantic Matchmaking Approaches

During this analysis of related work the aim was to understand which approaches are
being applied to perform semantic matchmaking between IoT TDs and IoT services.
We have analysed several related work, listed in Table 2.1.

The related work analysed show that 4 different approaches have been frequently
in terms of IoT semantic matchmaking: i) ontology-based; ii) clustering-based; iii)
statistics-based; iv) supervised learning-based. The first category of work (ontology-
based) takes ontology data (or a set of classes) as input and matches or labels a
given data point to one of the elements in the ontology using rule-based functions or
queries that are developed specifically for the elements of that ontology [22] [15].
In case there are data points which are described based on another ontology, or
the characteristics of the data isn’t covered within currently used ontology than
this approach will fail to do a matchmaking. Therefore it is strictly dependant on
an ontology and also requires manual work each time a new term or a notion is
introduced in the system. The proposed solution should work with any given ontology
and therefore this approach isn’t suitable.

The second category of work (clustering-based) creates clusters that consists of
semantically similar elements [28] [20] [23]. When a new data point has detected,
it is matched to the semantically closest cluster. This approach requires a training
process per ontology or set of output classes. However, it can be accomplished
without any source code changes or manual intervention and also no labelled data
required for training. Assuming that an ontology change won’t occur frequently, this
approach can be a good candidate for semantic matchmaking of Things to services.

The third approach (statistical) matches texts that are semantically closer to each
other. Notion of similarity can be obtained using various statistical approaches such
as Jaccard similarity [8] and term frequency-inverse document frequency or also
using a lexical database [12]. This approach doesn’t include a learning process and
it can be implemented without depending on an ontology.

5https://www.w3.org/Submission/wot-model/

7

2. State of the Art

Table 2.1.: List of the analysed semantic matchmaking related work.

Title Type Matching

A Hybrid Semantic Matchmaker for
IoT Services [7]

Ontology-based IoT services to re-
quests

Semantic Matchmaking for Job Re-
cruitment: An Ontology-Based Hybrid
Approach [9]

Ontology-based Job seekers to job
postings

A Machine-Learning Approach for Se-
mantic Matching of Building Codes
and Building Information Models
(BIMs) for Supporting Automated
Code Checking [26]

Supervised
learning-based

Building Codes
to Building Infor-
mation Models
(BIMs)

Semantic Matching Across Heteroge-
neous Data Sources [28]

Cluster analysis
for db schemas, su-
pervised learning
for instance-level
matching

Data source
matching, e.g.
matching of 2
relational db

Ontology Matching: A Machine Learn-
ing Approach [8]

Supervised
learning-based

Different ontolo-
gies in a single
domain

Short Text Clustering Enhanced by Se-
mantic Matching Model [20]

Clustering Query to docu-
ments on (Short
texts is social
media) dataset

The k-Means Clustering Algorithm
With Semantic Similarity To Estimate
The Cost of Hospitalization [23]

Clustering Clustering of pa-
tients using a se-
mantic similarity
as distance based
on an ontology

Sentence Similarity Based on Seman-
tic Nets and Corpus Statistics [12]

Statistics-based Semantic meaning
of different sen-
tences

Machine learning in the Internet of
Things: A semantic-enhanced ap-
proach [22]

Ontology-based Sensor data to on-
tology elements

8

2. State of the Art

The last approach (supervised learning) doesn’t fit large-scale sensing use-cases
due to having unknown amount of different information models or ontologies. It
requires a training process with all possible output classes which can’t be known
beforehand in this type of use-cases. As an example, assume that a model is trained
using a supervised approach. When a new IoT sensing device that is described using
a different information model is introduced to the system, the model wouldn’t be
able to understand the notions that exists only in the new information model.

As a result of this analysis, the following 3 different approaches that don’t rely on
a single ontology or requires labelled data have been selected to be implemented
and evaluated: i) a statistical approach, based on sentence similarity; ii) a Natural
Language Processing (NLP) neural network-based approach; iii) a clustering-based
approach. The first approach is based on [12] and doesn’t include any learning
process. It uses the WordNet [18] lexical database to create a semantic vector
representation of a sentence and also considers the order of the words in a sentence.
Since there is no learning process, it can be implemented without being dependant
on any information model or ontology. It focuses directly on computing the similarity
between sentences and it can also be used short texts or phrases. Values in a TD are
usually a couple of words long, or in the case of a "description" field it can be as long
as a couple of sentences. Therefore this approach is a good candidate for semantic
matchmaking of IoT things to services.

The second approach is based on NLP and uses a neural network model to learn
word associations from a large corpus of text [16, 17]. In this context, Mikolov et
al. introduced Continuous Bag-of-Words Model (CBOW) and Continuous Skip-gram
Model (Skip-gram) that are used to create vector representations of words. The prior
predicts a word based on the context it is used in while the latter predicts a set of
words before and after a given word. The first model fits better to the described
scenario since the goal is to predict output classes based on the context, e.g. match
a given TD to an output class with the name "Temperature".

The third approach follows a clustering approach and is based on the k-Means
algorithm. k-Means is a well known clustering method that is also used in semantic
matchmaking [23]. Clustering-based algorithms have the drawback that the total
number of clusters to be considered need to be defined beforehand, so for a semantic
matchmaking process it is necessary to assess how that number can be obtained. For
the proposed approach, the number of clusters will be the amount of sample data,
e.g. category (see definition 2.2.1) elements, for an ontology node.

Definition 2.2.1 (Category). A category in an ontology refers to a list of possible
values for an ontology element. E.g., "Temperature", "Humidity" and "Air Quality" are
some of possible values for "Quantity Kind" ontology element in FIESTA-IoT ontology.

9

2. State of the Art

Then k-Means algorithm will match TDs to possible category elements. The al-
gorithm requires a notion of distance between clusters and data points. Neural
networks are used to create vector representations of text data as described previ-
ously. Cosine distance between vectors will be used to calculate distance of a data
point to a cluster and while calculating the centroids (see definition 2.2.2). Clusters
will include only the matching phrases from the neural network approach and not the
whole TD. The centroids will be the average vector representations of the matching
phrases. In this way, an average understanding of how people would describe a
certain aspect for a given ontology is represented in a fully autonomous way.

Definition 2.2.2 (Centroid). A centroid of a cluster is the average values of all data
points in that cluster.

2.3. ML in far Edge devices

The purpose of having a better grasp on sensor data is eventually to facilitate the
data aggregation (see definition 2.3.1) process. Sensor data aggregation can be
performed on the Cloud or on the Edge. When pushed closer to the end-user, if
performed on "far Edge" devices (for instance, end-user devices, or devices that
are directly connected to end-user devices), the resulting data aggregation process
will result in lower latency and lower energy consumption. Continuous sensor data
streaming from and to a centralized point such as a device in the Cloud is known
to increase the overall latency and also requires more bandwidth. Edge computing
helps overcome this by bringing computation closer to the data source. It also
improves security of the network since the data don’t have to leave the network.

Definition 2.3.1 (Data aggregation). Representing a set of data points in a smaller
and summarized form.

On the other hand, in the case of intensive-computation applications, such as data
processing and data analysis services, the resources provided by Edge devices may
not be sufficient. Several related work focuses on the support to run computationally
heavy tasks on Edge devices. Zhang et al. [27] evaluates different Deep Learning
(DL) frameworks based on latency, memory footprint, and energy consumption for a
computer vision task. In this paper, different implementations of a large-scale DL
model and a small-scale DL model have been run on various devices; MacBook Pro,
Intel’s FogNode, NVIDIA Jetson TX2, RPI 3 B+, Huawei Nexus 6P. Luo et al. [14]
have measured the inference ability of Android devices to classify images based on
different DL frameworks. They have run 6 different image classification models on 5

10

2. State of the Art

different Android devices using Tensorflow Lite6, Pytorch Mobile7 and Caffe28 which
is now part of Pytorch as well.

However, we weren’t able to find a study where performance of far Edge devices are
compared, based on an IoT semantic matchmaking process. Therefore, a performance
comparison of different devices based on the running time and memory usage is
performed (see 6.

In order to implement the ML-based algorithms mentioned in the previous section,
an analysis and comparison of the existing ML/DL tools is performed. The sentence
similarity approach doesn’t require a training process and for the clustering approach
a customized version of the k-Means algorithm is used. Therefore, the tool to be
selected will be used to train a CBOW model only. The comparison of the tools
are based on the platform they can operate in, support for different programming
languages, hardware acceleration capability, model optimization (e.g., quantization,
pruning or clustering), open-source code availability, on-device training capability
(e.g. is it possible to do training on a constrained device), federated learning
capability and algorithms they can run. Table 2.2 shows the comparison results for
Tensorflow Lite9, PyTorch Mobile10, Apache MXNet11, ELL12, and Gensim13 [21].

Even though TensorFlow and PyTorch supports federated learning, this feature is
not yet available on TensorFlow Lite and PyTorch Mobile. The same situation applies
to on-device training with PyTorch Mobile. Training process requires data from not
only a small local network but a larger network that can provide TDs written using
different information models. Collecting such a huge data from different sources and
then processing it in a constrained device would be ineffecient unless it is performed
on separate constraint devices simultaneously using federated learning paradigm.
For the sake of simplicity and also due to lack of data on-device training and federated
learning features are neglected while selecting a tool. All of the tools except ELL
provides an implementation for word2vec. Gensim provides an easy implementation
of word2vec algorithms and some components of the TSMatch is already written in
Python. Therefore the Gensim library is preferred.

6https://www.tensorflow.org/lite
7https://pytorch.org/mobile/home/
8https://caffe2.ai/
9https://www.tensorflow.org/lite/

10https://pytorch.org/mobile/home/
11https://mxnet.apache.org/versions/1.9.0/
12https://microsoft.github.io/ELL/
13https://radimrehurek.com/gensim/

11

2. State of the Art

Table 2.2.: Comparison of ML/DL frameworks and libraries

Framework
/ Library

TensorFlow
Lite

PyTorch
Mobile

Apaxhe
MXNet

ELL Gensim

Platform Android,
iOS, Em-
bedded
Linux
(ARM64)
Microcon-
trollers

Android,
iOS

Linux,
MacOS,
Windows,
Cloud, RPI,
NVIDIA
Jetson

Windows,
Ubuntu,
MacOS,
RPI, Ar-
duino,
micro:bit

Any plat-
form that
supports
Python and
NumPy

Language Java, Swift,
Objective-
C, C++,
Python

Python,
C++, Java

Python,
Scala, Java,
Clojure, R,
Julia, Perl,
C++

Python,
C++

Python

Hardware
Accelera-
tion

+ + + - -

Model Op-
timization

+ + + - +

Open
Source

+ + + + +

On-device
Training

+ - + - -

Federated
Learning

- - + - -

Algorithms computer
vision tasks,
pose es-
timation,
question
answering,
text classifi-
cation ...

computer
vision tasks,
neural
machine
translation,
question
answering,
vision trans-
formers ...

computer
vision tasks,
word em-
beddings,
language
model,
machine
translation,
sentiment
analysis ...

Image clas-
sification,
object de-
tection,
audio
keyword
spotting

Natural
Language
Processing,
Informa-
tion Re-
trieval

12

2. State of the Art

2.4. Tooling

2.4.1. Data Sets

Agarwal et al. have developed the FIESTA-IoT Ontology [1] that aims to ease sensor
observation data exchange between testbeds that integrate or interact with IoT
devices. Categorizations [2] for 4 different aspects have also been developed and
published together with the ontology [3] by the same authors; quantity kind, mea-
surement unit, domain of interest and sensing device. A partial graph visualization
of the published ontology obtained using the Neo4j browser14 is shown in Figure 2.2.

Figure 2.1.: Components of the TSMatch demonstrator in fortiss IIoT Lab. Image is
taken from [6]

The FIESTA-IoT Ontology mentioned above is created by benefiting multiple do-
mains and therefore is a good representation of a real-life scenario. The concepts
introduced in this dissertation will be demonstrated and evaluated on the FIESTA-IoT
Ontology due to its wide use, but can be applied on any given ontology or even in
multiple ontologies.

WordNet 15 is a lexical database for English language. Besides being a dictionary
and containing a vast list of synonyms, WordNet also provides a hierarchical structure
of words. As an example, a "teacher" is a "person" and a "person" is a "living
organism" and a "living organism" is eventually an entity. WordNet is a lexical
database [12], widely used due to the features it provides. We use WordNet to train
the statistical similarity approach.

14https://neo4j.com/developer/neo4j-browser/
15https://wordnet.princeton.edu/

13

2. State of the Art

As explained in section 2.2, CBOW method is used to train word vectors with a
TD dataset collected from 2 different sources; i) WoT PlugFest testing dataset16 and
OneDM SDF Playground repository17. Besides creating word vectors by training,
word vectors published by Google18 will also be used. This second dataset is created
by running CBOW on the Google News dataset. Therefore, the vector representation
of the words represents the generic meaning of the words rather than being IoT
specific. Words are also in descending order based on how frequently they appear.

Figure 2.2.: Partial graph representation of the FIESTA-IoT Ontology that shows
some of the category elements for quantity kind.

2.4.2. TSMatch: Thing to Service Matching Middleware

TSMatch is a fortiss semantic matchmaking concept and open-source middleware19

which currently relies on the Sørensen–dice coefficient and term frequency–inverse

16https://github.com/w3c/wot-testing/tree/main/events
17https://github.com/one-data-model/playground
18https://code.google.com/archive/p/word2vec/
19https://git.fortiss.org/iiot_external/tsmatch

14

2. State of the Art

document for semantic matchmaking [6]. Based on the matching, a set of available
Things are selected, then grouped and an aggregated object representing this group-
ing is again stored in a TSMatch database. TSMatch has been applied in experimental
pilots (TRL6) across the H202020 European Connected Factory Platform for Agile
Manufacturing (EFPF) project21, and a demonstrator is available and interconnected
to the EFPF data spine via the fortiss IIoT Lab22. The best ML-based approach
analysed in this dissertation will be included in the TSMatch open-source software
release v2.0.

2.4.3. Auxiliary Libraries and Other Tools

Natural Language Toolkit (NLTK)23 is an open-source Python natural language
processing library. It contains several lexical resources including the WordNet lexical
database and also provides text processing functionalities. These functionalities are
needed to implement data pre-processing steps, rf. to Chapter 4 for details. All of the
data pre-processing steps can be implemented using NLTK including tokenization
and lemmatization.

Eclipse Paho MQTT client library24 is an open-source MQ Telemetry Transport
(MQTT) client implementation for Python language. It provides all of the function-
alities needed to communicate with an MQTT broker, such as connect, disconnect,
publish and subscribe and very easy to use. Paho MQTT client is used to communi-
cate with the MQTT broker (see chapter 4 for details) in all of the modules written in
Python.

NumPy25 is an open-source easy-to-use Python package that provides scientific com-
putation functions. This library is utilized whenever a vector operation is required,
e.g. calculating distance between two word vectors.

Finally, the official Neo4j Python driver26 is used to realize graph db operations.
It can be used to send db queries and receive replies. This library is used in every
module that is written in Python and requires to connect the graph db.

20https://ec.europa.eu/info/research-and-innovation/funding/funding-opportunities/funding-
programmes-and-open-calls/horizon-europe_en

21https://www.efpf.org/
22https://www.fortiss.org/en/research/fortiss-labs/detail/iiot-lab
23https://www.nltk.org/
24https://www.eclipse.org/paho/
25https://numpy.org/
26https://neo4j.com/docs/api/python-driver/current/

15

3. Use-case

This section describes a generic use-case which helped to dimension the development
of the proposal, by considering assumptions and requirements; actors involved.

The use-case is based on the fortiss TSMatch demonstrator, which is currently
being applied in IIoT environments, and which is also being used as a pilot service
with different SMEs in the context of the EFPF project, as described in section 2.4.2.

This use-case considers the notion of a smart factory, where today there are
multiple sensors integrated into the different factory environments, e.g., shop-floor,
warehouse, and is represented in Figure 3.1. There are machines from different
vendors, with coupled sensors attached on them. Moreover, sensors are also used
to monitor the environment, e.g., CO2, temperature, humidity. Employees of this
facility are using wearable devices, tablets and smart phones which also have sensing
capabilities. In this scenario, different IoT platforms have been acquired to different
vendors. Therefore, each platform considers different semantic standards to support
an interoperable data exchange. Data exchange is supported by a data bus across
the factory, and the different platforms rely on specific communication protocols
to exchange data, e.g., OPC UA, MQTT Sparkplug. Different services, e.g., data
analytics tooling, environmental monitoring services, certification services, are
interconnected to the data spine via software-based connectors that have been
specifically devised for this purpose, by the different vendors, or by an integrator.
Some of these services run on the so-called Edge (close to the field-level devices,
e.g., on the shop-floor) and others run on the Cloud.

On this scenario, the semantic matchmaking process can occur on the Cloud, or
on the Edge. Placing the matchmaking on the Edge is expected to lower latency,
and to also reduce energy consumption, as most of the data processing (including
aggregation) is performed closer to the end-user.

For this scenario, the following assumptions are considered in the context of the
dissertation:

• semantic matchmaking occurs on the Edge, to reduce latency.

• Any IoT devices are represented by a standardised Things Description.

• Any IoT service is represented by a standardised semantic description.

16

3. Use-case

Figure 3.1.: A smart facility with various sensing devices and the semantic match-
making engine deployed on the edge.

• A set of ontologies can be used, to improve the matchmaking.

• The IoT device discovery is handled by an existing process.

On this scenario, the semantic matchmaking engine TSMatch is installed locally
on the Edge. Sensors are automatically discovered via the coaty.io framework,
that TSMatch employs. The TSMatch client is used by the end-user to monitor the
environment.

17

4. Architectural Design

The proposed concept is based on the fortiss TSMatch concept and therefore, the
functional blocks of the architecture are based on the overall TSMatch design, and
the functional blocks highlighted in blue correspond to the functional blocks of the
developed concept.

Figure 4.1.: The proposed architecture diagram together with other components of
the TSMatch

TSMatch v1.0 is therefore middleware that relies on the coaty.io framework to
discover IoT Things. IoT TDs are stored on the TSMatch Things Registry. IoT Things

18

4. Architectural Design

are interconnected via MQTT (Mosquitto) with coaty.io.
A graph database implemented in Neo4j stores IoT TDs, service requests, Match-

making results.
Multiple connectors have been developed to allow interoperability of TSMatch

with different platforms. For instance, the EFPF connector corresponds to a MQTT-
Advanced Message Queuing Protocol (AMQP) connector. A REST connector is used
to interconnection with external service platforms.

The design of the proposed semantic matchmaking process considers the following
functional blocks (blue):

• Ontology interface.

• Data pre-processing.

• Semantic matchmaking, where the three different approaches selected as
discussed in section 2.2 have been implemented: i) statistical approach based
on cosine similarity (LEX-DB); ii) NLP neural-network model approach (W2VEC),
iii) clustering-based approach (k-Means).

• Data Aggregation.

The proposed mechanism runs in 2 different phases. During setup, an ontology is
imported into the TSMatch via the ontology interface module. During runtime, both
the TD dataset(s) and the ontology dataset(s) are pre-processed, and then passed
to the semantic matchmaking functional block, to be handled by one of the three
proposed algorithms. The algorithm then matches TDs to the ontology centroids
(aggregation points). Service requests are captured by the data aggregation module
and matched to the aggregated TD, so an aggregated (averaged) value is provided to
the service.

4.1. Setup phase

As discussed in chapter 2, TSMatch performs the semantic matchmaking based on
any given ontology. In order to import ontology data into the TSMatch, a module
named ontology interface has been developed.

4.1.1. Ontology Interface

The ontology interface provides a REST API that allows importing an ontology into
the graph database. Currently, tt accepts both JSON and OWL files. When a new
ontology import is triggered, the following steps are executed in order:

19

4. Architectural Design

• Delete matching of sensors to ontology elements in the graph database.

• Delete currently used ontology nodes.

• Convert the given ontology to JSON if necessary.

• Create new nodes and edges that corresponds to the classes and relations in
the given ontology.

• Find and mark aggregation (centralized) nodes (see definition 4.1.1) if not
already given inside the HTTP request.

• Trigger TD to ontology matching service to match available sensors to the new
ontology elements.

An illustration of the process is shown in Figure 4.2.

Figure 4.2.: A diagram showing the ontology data import process.

Definition 4.1.1 (Aggregation Point). It refers to the centralized nodes, nodes
with excessively high number of neighbors, in an ontology data. Child nodes of an
aggregation point, e.g. sub-classes in an ontology, represents possible values for that
aggregation point.

20

4. Architectural Design

Aggregation points refer to centroids of the graph that defines an ontology. This is
based on the assumption that aggregation points have distinctively more neighbors
than the other ontology elements since they refer to a list of possible values, e.g.,
a category. Figure 4.3 shows a partial visualization of FIESTA-IoT ontology nodes.
There are 3 highly centralized nodes with a high number of neighbors that corre-
sponds to "QuantityKind", "Unit" and "SensingDevice" ontology elements. A given
TD will be matched to one of the child nodes for each of the aggregation points. An
example matching would be; "QuantityKind": "Temperature", "Unit": "DegreeCelsius"
and "SensingDevice": "Thermometer".

In case these aggregation points aren’t given in the request to the ontology inter-
face, then they can be found by running an anomaly detection method on the number
of neighbors that each node has. The proposed implementation includes a simple
anomaly detection method that is based on the empirical rule1. According to the
empirical rule, 99.7 percent of the values are within a range that corresponds to 3
times the standard deviation.

Figure 4.3.: A visualization of FIESTA-IoT ontology nodes showing the aggregation
(centralized) points. Visualization is created using Neo4j browser.

1https://en.wikipedia.org/wiki/68-95-99.7_rule

21

4. Architectural Design

4.2. Runtime phase

4.2.1. Data Pre-processing

The data pre-processing functional block in the proposed architecture comprises
well-known text pre-processing steps that have been described in section 4.3. Pre-
processed TDs are passed to one of the 3 selected semantic matchmaking algorithms.
The semantic matchmaking approach matches the given TD to ontology elements
that are given by the user. Then it creates an edge in the graphdb between the
matched ontology nodes and the TD. The Ontology interface can be used to import
any ontologies into TSMatch (rf. to section 4.1.1).

4.3. Data pre-processing

The data pre-processing module consists of well-known pre-processing steps that
are frequently used in Natural Language Processing (NLP). It includes the following
steps which are illustrated in figure 4.4:

• Tokenization: Separate text into sentences.

• Remove punctuations.

• Fix camelCase: Some words in the TDs are written in camelCase2 format. A
word written in this format might not exists in the word2vec model word list.
Therefore they need to be separated into multiple words, e.g., "camelCase" to
"camel case".

• Lowercasing.

• Remove stopwords: Python NLTK Toolkit[5] includes a list of stopwords in
English. Remove those words from the TDs.

• Lemmatization: Find stem of the words using "WordNetLemmatizer" from the
NLTK toolkit.

• Remove Trivial Words: Some words that appear commonly in TDs creates a
non-realistic similarity, i.e., the word "sensor". As an example, the CBOW model
produces a higher similarity score for "temperature sensor" and "luminance
sensor" pair than "temperature" and "luminance".

2https://en.wikipedia.org/wiki/Camel_case

22

4. Architectural Design

Figure 4.4.: A diagram showing the data pre-processing steps.

After the pre-processing step, the TDs are passed to one of the semantic similarity
algorithms. The algorithm matches the given TD to the ontology elements. Then a
relation is created in the graph database between the TD and the ontology nodes
that it matched to.

4.4. Semantic Matchmaking Algorithms

This section defines how TD to ontology element matchmaking is performed using
the following 3 semantic similarity algorithms. Besides small differences which are

23

4. Architectural Design

described in individual sections next, the matchmaking process is given in Algorithm
1 and 2. To better illustrate the concept developed to match TDs using semantic
matchmkaking algorithms, figure 4.5 shows a part of a TD where a sensor is defined.

Figure 4.5.: Part of a TD from [25].

Some attributes in a TD appear in different information models. Common terms are
"name", "description" or "title" that exist in WoT TD, OGC SensorThings API Sensing
part, and OneDM SDF. These fields include valuable information regarding the type
of the sensor, its measurement unit for instance. As an example, the sample TD
shared in Figure 4.5 has name and description fields where it mentions the ontology
"quantity kind" (Light intensity) and measurement unit (Lux) of a sensor. Therefore,
the algorithm initially checks if a matching can be found using these fields in line
9. "ap["name"]" refers to the name of an aggregation point, e.g., "QuantityKind".
"ap["category"]" refers to the children of an aggregation point, e.g., ["Temperature",
"AirQuality", "Humidity", ...].

Each collected TD has one or more sensor description. Secondly, the algorithm
checks if a matching can be found using these sensor descriptions in line 11. If this
is also unsuccessful, then it checks the remaining parts of the TD to find a matching
to the aggregation points that are extracted earlier in line 13.

Algorithm 2 in Annex B describes how the semantic similarity approaches are
used while matching a TD to child nodes of an aggregation point. The method
named "similarity" refers to one of the 3 semantic similarity algorithms. First of all,
the algorithm tries to find a match between keys in a TD and aggregation points

24

4. Architectural Design

between lines 4 and 10. For instance, it checks if there is a key that is similar
to "QuantityKind" or "Unit". Each of the semantic similarity algorithm produces
a similarity score between 0 and 1. In case the similarity score is higher than a
KEY_SIMILARITY_THRESHOLD, then it is accepted as a matching key and consider
the value of that KEY only in the next step.

In case there is an attribute that has a higher similarity to the given ontology
aggregator point name, then the algorithm tries to find a matching value to the
children of that aggregation point between lines 11 and 24. If there is no matching
key then the algorithm checks similarity of each value in the given TD to the children
of an aggregation point.

4.4.1. LEX-DB: Sentence Similarity

The applied sentence similarity approach LEX-DB is based the work by Li et al.
and an open-source implementation of their approach[12, 10] is used for semantic
matchmaking. It produces a similarity score between 0 and 1 using semantic and
syntactic information contained in the given pair of texts. Initially, the algorithm
creates raw semantic vectors and word order vectors for the sentences with the
assistance of the lexical database WordNet (rf. to section 2). Contribution from
each word to the meaning of a sentence is marked by assigning it a weight value
using a text corpus and then the weights are combined with the raw semantic vector.
Finally, an overall semantic similarity score is calculated using a weighted word
order similarity and semantic similarity. Li et al. argue that syntax has more effect
on the semantic processing of a text and hence the authors use higher weight for
syntactic similarity than the word order similarity.

4.4.2. W2VEC: NLP and Word Embeddings

Word embeddings refers to vector representations of words in terms of real numbers.
Our W2VEC approach is based on the work by Mikolov et al. where the authors
introduce CBOW [16, 17] (rf. to section 2). As mentioned in 2.2, CBOW approach
is implemented to train word vectors from a TD dataset. Word vectors are usually
trained using GBs of corpus data. Since the training data size is in the order of
megabytes, word vectors published by Google are used as well [4].

However, Google published 3 million vectors with 300 features that takes around 6
GBs of space when it is extracted into a text file. Keeping all of the word vectors in
the memory wouldn’t be efficient. Two options were considered; i) dimensionality
reduction, ii) using a subset of word vectors instead of the entire dataset. The original
paper where the CBOW method is described, different dimensions including 300 are

25

4. Architectural Design

compared. Results show that further increasing the dimension size doesn’t increase
the accuracy significantly. However, reducing the number of dimensions causes a
significant decrease in the accuracy. Therefore the dimensionality reduction option
is eliminated.

A second option to circumvent this problem is to consider a subset of vectors. The
vector list published by Google is ordered based on the popularity of each word. This
option is based on the assumption that the most popular X words will appear in a TD
very frequently and the effect of the remaining words will be negligible. In order for
the justification of this assumption the following experiment is carried out: Subsets
of different sizes from the word vectors published by Google is extracted. Then a
percentage value representing the ratio of words that are both in the collected TD
dataset and also in the extracted subset to all words in the TD dataset is calculated.
Results are given in Table 4.1.

Table 4.1.: Coverage of word vectors of different sizes.

Subset size Coverage 1 Coverage 2

1,000 20.22 30.18

2,000 31.89 50

5,000 52.52 70.4

10,000 67.28 86.2

20,000 79.68 91.95

50,000 91.25 96.93

100,000 95.62 97.99

200,000 97.94 98.85

300,000 98.35 99.46

Definition for the Coverage 1 and 2 are given in definition 4.4.1. Using subsets
with different sizes also effects the amount of space required and accuracy of the
semantic matchmaking. Table 6.1 in section 6.1, shows how much space is required
to store each subset and also how they effect the accuracy of semantic matchmaking.

Definition 4.4.1 (Coverage). Ratio of words in the TD dataset that are also inside
the word vector subset

t = list of words that are in TD dataset.
ws = list of words that are in word vector subset.
unique(a) = return a list of unique words (remove duplicates) in list a.
|a| = size of the list a.

26

4. Architectural Design

Coverage 1 = |t∩ws|
|ws| , Coverage 2 = |unique(t∩ws)|

|ws|

According to the results in Table 4.1, size of the subset exceeds 1 GB when
approximately 270,000 words are selected. Coverage starts to increase very slowly
after taking the most popular 100,000 words. Since the coverage values aren’t
increasing considerably after exceeding a certain point, we have opted to take a
subset of word vectors instead of using all 3 millions of them.

Cosine similarity approach is used while calculating similarity of an ontological
element to a value field in a TD. In order to obtain a single vector for a text field
that consists of multiple words, an average vector is calculated. However, while
comparing two texts with different sizes, e.g. 2 words and 10 words, average vector
representation might not reflect the actual similarity even the 2 words inside the first
text appear in the second text. As an example, consider the following 2 short texts:
"temperature sensor" and "a highly sensitive temperature sensor with model number
X from company Y". Even though it can be inferred that that these two texts describes
a "temperature sensor", the extra words in the second sentence ("high", "sensitive",
"model", "number", "X", "company", "Y") changes the average representation of the
sentence and hence when put on a vector space, it gets further away from the vector
that represents "temperature sensor" only.

To overcome this, the n-gram method with a dynamic n value is utilized. In the
n-gram method, the words that appear together in a long text are put in the same
set and such multiple sets of words created for a single text. After removing the
stopwords and lemmatization, an N-gram representation for the second text given in
the previous paragraph with an N value of 3 looks as follows:

• (high, sensitive, temperature)

• (sensitive, temperature, sensor)

• (temperature, sensor, model)

• (sensor, model, number)

• (model, number, X)

• (number, X, company)

• (number, company, Y)

27

4. Architectural Design

The words "temperature" and "sensor" appear in the sets 2 and 3 with an additional
word. In this case, comparing one of these sets with the first text "temperature
sensor" would produce a higher similarity score than comparing the whole text.
Elements in a category, e.g. child nodes of an aggregation point are compared to
values in a TD. Therefore the value that is being searched is the name of the category
node which can consist of multiple words. Value of N should be at least as high as
the number of words in the category node name so that a matching value in the TD
can be captured. If the value of N is much bigger than the category node name, then
this would result in the same situation that is given in the previous example with
the temperature sensors. Since the length of category node names vary, e.g. 1 word
"Temperature", 2 words "Air Quality", 3 words "Volatile Organic Compound", picking
a static number for N is ineffective. Therefore the number N is dynamically selected
in a way that it will be equal to the length of category node name to obtain an exact
matching.

The following steps are used for calculating semantic similarity between an aggre-
gation point name or category node name and a key or value in a TD:

• assign the word count in a category node name or aggregation point name
(output class name in short) to N

• if N is smaller than 2, then assign 2 to N

• calculate average vector representation for the output class name

• separate a given key or value in a TD into multiple sets based on the value of N

• calculate average vector representations for each set

• calculate cosine similarity between the vector that represents the output class
and vectors that represent each set

• find the set with the highest cosine similarity

• if the cosine similarity is higher than a threshold then accept it as a match

4.4.3. k-Means: Clustering

In the k-Means approach, a set of clusters per aggregation point is created. Each set
contains clusters for all possible elements, e.g. all elements in a category. For the
FIESTA-IoT ontology, this means that there are 4 sets of clusters for "QuantityKind",
"Unit", "SensingDevice" and "DomainOfInterest", each containing a list of clusters

28

4. Architectural Design

that corresponds to the category elements. As an example to "QuantityKind" ag-
gregation point, there are one cluster per "Temperature", "Air Quality", "Humidity"
etc.

As stated in chapter 2, a customized version of the well-known k-Means algorithm
has been considered as the clustering method to be applied. k-Means requires the
total number of clusters to be provided. In the original version of the algorithm,
different number of clusters are evaluated to find the right amount of clusters that can
best represent the variety among the data points. One common way to select initial
centroids for each cluster is to pick data points that have the highest betweenness
centrality value. Then the algorithm assigns data points to the nearest cluster. After
this initialization phase, centroids for each cluster are calculated again, this time
by taking the average values of data points in that cluster. Then data points are
reassigned to the closest clusters. This final step is repeated for a predefined amount
of time or until no data point is assigned to a new cluster.

The variation that has been considered in this dissertation considers that the
number of clusters is equal to the total number of aggregation points obtained from
the used ontology/ies.

In the used FIESTA ontology, there are 178 different classes defined for "Quanti-
tyKind", which correspond to the ontology aggregators (cluster centroids). Hence, in
total the algorithm considers 178 clusters. Same logic applies for other aggregation
points as well. Initially, the cluster centroids will be the vectorized version of the
class names inside each aggregation point. Vectors are obtained from the previously
described word embeddings approach. As a notion of distance between data points
or centroids, cosine distance is used since the data is in vector format. Each cluster
contains a list of phrases that were found similar to the centroid of that cluster.
Iteration step is same as the original version with a maximum iteration count of 10.

4.5. Data Aggregation

Data aggregation is performed based on the assumption that every IoT service can
be described semantically according to an ontology. This assumption suggests that
a service request will include elements from an ontology. Upon receiving a service
request, data aggregation module looks for matching sensing devices according to
the ontological elements inside the request. Then the engine subscribes to data from
those sensors and aggregate using a simple average function.

As an example, figure 4.6 shows a sample service request which includes category
elements from the FIESTA-IoT ontology. Data aggregation module searches for sensor
descriptions in the graphdb that has a relation to "Illuminance", "Lux", "LightSensor"

29

4. Architectural Design

Figure 4.6.: An example service request that includes elements from FIESTA-IoT
ontology.

and "Environment" nodes. It sends a response back to the requestor that contains a
list of sensor and TDs. Lastly, the module subscribes to data from those IoT devices,
aggregates data using an average function (to be improved) and continuously sends
the aggregated data to the requestor until the service request is deleted.

30

5. Implementation

The architecture proposed and described in Chapter 4 has been implemented follow-
ing a micro-service architecture. The source code is available via the fortiss git upon
request1 and also directly via this2 link.

Implementation details are described next. Moreover, Annex C includes the source
code file structure for each of the 3 modules developed.

5.1. Use-case Setup: fortiss IIoT Lab

5.1.1. Hardware Equipment

During the development and evaluation phases the code has been developed in the
fortiss TSMatch software and tested in the demonstrator. The testbed components
that are utilized during this study are: i) Raspberry Pi 3B+ and Raspberry Pi 4B with
5 sensors attached to each, measuring temperature, humidity, CO2 concentration,
particle size in the air and noise, ii) An Intel NUC NUC10i7FNH3 device that hosts
dockerized TSMatch Engine, the message broker and the graph database.

5.1.2. Software

The auxiliary software used are listed in this section.

Coaty

Coaty4 is a communication middleware that allows any to any communication be-
tween applications that uses Coaty. It is designed to facilitate various event-based
communication patterns in a decentralized system. Coaty is built on top of inter-
changeable open-standard pub/sub messaging protocols, i.e. MQTT5. In TSMatch,

1https://git.fortiss.org/iiot/demonstrator2/-/tree/erkan/matching_improvement
2https://gitlab.com/erkankarabulut/master-thesis-implementation
3https://www.intel.com/content/www/us/en/products/sku/188811/intel-nuc-10-performance-kit-

nuc10i7fnh/specifications.html
4https://coaty.io/
5https://mqtt.org/

31

5. Implementation

Coaty is used to discover IoT devices in the system, notify different modules in case
of an event and continuously publish or consume data to/from other external or
internal modules.

Eclipse Mosquitto MQTT Broker

MQTT is a lightweight pub/sub based messaging protocol that is developed for IoT
systems. Eclipse Mosquitto6 is an open source message broker that implements
MQTT protocol and a part of the Eclipse Foundation7. Eclipse Mosquitto is used as
the underlying messaging component of the Coaty.

Neo4j Graph Database

Neo4j graph database is an ACID compliance graph database that supports process-
ing data in terabytes level. Ontology elements are stored in the database. When
an IoT device is discovered a node in the graph containing the TD and one node
per sensor descriptions that are inside the TD is created. Matching of ontology
elements to sensor descriptions are shown as relations on the graph db. Thing and
sensor descriptions together with all relations are deleted a when they are no longer
available. Service requests are also stored in the graph db as separate nodes as long
as the request is active and matching of service requests to sensor descriptions are
also shown as relations

5.2. Ontology Interface

Ontology interface provides a REST API where ontology data can be imported. REST
API is implemented using Django8 in Python and dockerized using a Python image ver-
sion 3 as a base image. It accepts both a URL to the ontology data and also the data
itself in either JSON or OWL format, see Views class under ontology_interface/app/
folder. Lohmann et al.[13], provides multiple tools (e.g. OWL2VOWL or WebVOWL9)
that can be used to convert OWL files into JSON formats. An executable jar file
for OWL2VOWL tools is placed under ontology_interface/ontology/converter/ di-
rectory. OWL2VOWL tool is integrated into the ontology interface in order to
convert OWL files to JSON for ease of development. It runs on port 8080 and

6https://mosquitto.org/
7https://www.eclipse.org/
8https://www.djangoproject.com/
9http://vowl.visualdataweb.org/webvowl.html

32

5. Implementation

accepts new ontologies on the path ’ontology/’. URL mapping can be found in
ontology_interface/web/urls.py file.

The ontology interface is connected to the graph database and Eclipse Mosquitto
MQTT broker. DB connection is established inside the BaseRepository class under
ontology_interface/app/repository folder and an MQTT client is created under ontol-
ogy_interface/app/service folder. For all the implemented modules, the class files
that includes db related operations are in the repository folder and MQTT client is in
the service folder. Upon receiving a request, it deletes the existing ontology data
together with all the relations to the ontology nodes and imports the new ontology
data. Afterwards it publishes a message over MQTT in order to notify TD to ontology
matching module about the ontology change. This process is implemented in Views
class.

5.3. TD to Ontology Matching

This module developed in Python and runs inside a docker container that uses
Python version 3 as a base image. It is also connected to the graph database
and the MQTT broker similar to the previous modules. Semantic similarity al-
gorithms and data pre-processing steps are implemented inside this module as
shown in Figure 4.1. Individual files for all 3 algorithms can be found under
td_to_ontology_matching/src/algorithm folder. Data pre-processing classes are under
td_to_ontology_matching/src/preprocessing folder.

The module communicates with others over the MQTT broker. When a new IoT
device is discovered, its TD is published over a discovery topic. TD to Ontology
matching module subscribes to discovery messages and matches newly discovered
sensors to ontology elements. It also captures messages published by the ontology
interface when a new ontology is imported. In this case, it extracts all available
sensors in the graph database and matches them to the new ontology elements. This
actual matching operation is implemented in TDToOntologyMatching class that is
under td_to_ontology_matching/src/service directory.

5.4. Data Aggregation

Similar to the previously described modules, the data aggregation module is devel-
oped in Python and dockerized using Python version 3 as a base image. The data
aggregation module is also connected to the graph database and communicates with
other modules and outside world through the MQTT broker. Its duties are to receive
service requests, find matching sensors in the graph database, subscribe to the data

33

5. Implementation

from those sensors and aggregate the results. The results are then published back to
the requestor.

Sensor observation and service request arrival events are handled in Obser-
vationEventHandler and ServiceRequestHandler classes that are located under
data_aggregation/src/handler directory. data_aggregation/src/service/ServiceRequest
class keeps a list of active service requests and also a list of matched Things descrip-
tions per service request.

5.5. Data Flow

This section describes the data flow between the modules in TSMatch for a selected
set of scenarios that includes all improvements made to the TSMatch in the scope of
this thesis.

Figure 5.1 shows the sequence of actions when a new ontology is imported into
TSMatch via the ontology interface. First, an external ontology data provider sends
the ontology data using the REST API of the ontology interface via a POST request.
The request body includes a JSON data with "url" or "data", and "type" keys. Type
refers to the type of the ontology file which can be JSON or OWL. If the type of file is
OWL, then it is converted to JSON using the OWL2VOWL tool mentioned in section
5.2. Since JSON files can be converted to "dict" type in Python and therefore easier
to process. An ontology provider can either send the ontology data itself with the
"data" key or send a URL where the ontology data is hosted. In the later case, data is
downloaded and then converted to JSON if necessary.

As a second step, the ontology interface deletes the existing ontology data from
the graph database together with the matchings of TDs to the ontology nodes.
Then it stores the new ontology data. Next, it publishes a message on "fortiss-
org.TSMATCH.NDATA.ONTOLOGY_CHANGED" topic to notify TD to ontology match-
ing module. This module then extracts available TDs and aggregation points from
the graph database. It then runs the algorithm given in 1 in order to match TDs to
new ontology elements using one of the similarity approaches from section 4.4.

Figure 5.2 shows the sequence of actions when a new IoT thing is discovered. An
IoT device with a Coaty agent running on it publishes its TD via the MQTT broker on
"fortiss-org.TSMATCH.NDATA.DISCOVERY" topic. TD to ontology matching module
subscribes to the same topic and listens for discovery messages right after it starts.
It also keeps a list of aggregation points and their child nodes in the memory at
all times. This due to not sending a db query each time a matching is done. Upon
receiving the new TD, the module matches it to ontology elements and stores the
matching result in the graph database as relations between sensor descriptions and

34

5. Implementation

Figure 5.1.: A diagram showing the messages exchanged during a new ontology
import.

ontology related nodes.
Figure 5.3 illustrates the sequence of actions after an IoT service request is

received. A request can be sent via TSMatch mobile client, REST client or directly on
MQTT level. In order to capture the service requests, the data aggregation module
subscribes to "fortiss-org.TSMATCH.NDATA.SERVICE_REQUEST" topic. As shown
in Figure 4.6, each service request contains ontology elements. After receiving a
request, it queries database to find IoT things that are matched to the given ontology
elements. The list of IoT things is then returned to the client.

The aggregation module then subscribes to measurement data from those IoT
devices and aggregates the data using a mean function. If the client initially sent the
request via the REST interface, then it receives web socket connection details where
the aggregated sensor observation data is continuously published. Otherwise the
client receives data on the "fortiss-org.TSMATCH.NDATA.OBSERVATION" topic.

35

5. Implementation

Figure 5.2.: A diagram showing the messages exchanged when a new IoT device is
discovered.

Figure 5.3.: A diagram showing the messages exchanged when a new service request
arrived.

36

6. Performance Evaluation

6.1. Evaluation Plan and Experimental Settings

The aim of the performance evaluation is to analyse different semantic matchmaking
algorithms, lexical, word2vec word embeddings and k-Means.

For this purpose, the following performance evaluation parameters have been
considered:

• accuracy, defined as the semantic matchmaking accuracy of Things to service
matching. Percentage of correct matchings to all matchings.

• time to process of a matchmaking, corresponding to the required running time
measured on the device where TSMatch resides, for matching TD to ontology
elements

• peak memory usage during TD to ontology matching for all of the proposed
approaches

The evaluation plan is to first create training and testing datasets. Then the
selected semantic matchmaking algorithms will be trained using the training dataset,
except lexical db-based approach since it doesn’t require a training process. A
baseline will be extracted by manually matching the testing dataset to ontology
elements. Each of the semantic matchmaking algorithms will match the testing
dataset to ontology elements and accuracy of the matchmaking will be calculated
using the manually created baseline. This last step will be repeated on various
devices in order to measure time to process and peak memory usage parameters.

6.2. Datasets

6.2.1. TD Dataset

The matchmaking requires datasets comprising heterogeneous TDs. For the purpose
of analysis a large TD dataset has been created, after a vast search (see section 2).
This dataset has been created based on the following 2 datasets:

37

6. Performance Evaluation

• WoT Dataset composed of heterogeneous TDs1, corresponding to sensor TD.
This dataset comprises 327 files, each of which holds one or more than one
sensor or actuator. There are 2191 sensor TDs in total[25].

• OneDM SDF TD dataset2, composed of 200 sensor TDs[19].

Therefore, in total a sensor TD dataset (DAT1) comprising 2391 heterogeneous
sensor TDs is created.

6.2.2. Ontology Dataset

As described in section 2.1, we have used the FIESTA-IoT Ontology as an example
of an ontology, to perform the semantic matchmaking. FIESTA-IoT comprises 483
different class of entities including 178 category elements for "QuantityKind", 92
category elements for "Unit", 109 category elements for "SensingDevice" and 11
category elements for "DomainOfInterest" class.

6.2.3. Training and Testing Datasets

Out of DAT1, 2 testing and 1 training datasets have been built.
A first testing dataset, TESTING13, consists of 200 sensor descriptions, roughly

10%, out of DAT1, that have been randomly selected based on a uniform distribution
using the package from NumPy4. As described in section 6.2.4, the testing dataset
is manually labeled based on the FIESTA-IoT ontology. Therefore, due to time
constraints, instead of trying different testing-training split percentages, only 1 split
(10%) option is considered. The remaining %90 percent of DAT1 dataset is used as
the training dataset, TRAINING5, for Word2Vec and K-Means algorithms.

A second testing dataset (C-TESTING6) has been considered, still relying on 200
sensor descriptions, but removing the sections of the TD that are not applicable to
the matching towards an ontology. For instance, the WoT TD attribute "created"
or "modified" defines when the TD is created and modified. Therefore, it doesn’t
contribute to the semantic meaning while understanding which ontology element

1https://github.com/w3c/wot-testing/tree/main/events/2022.03.Online/TD
2https://github.com/one-data-model/playground/tree/master/sdfObject
3https://git.fortiss.org/iiot/demonstrator2/-/tree/erkan/matching_improvement/

td_to_ontology_matching/dataset/testing
4https://numpy.org/
5https://git.fortiss.org/iiot/demonstrator2/-/tree/erkan/matching_improvement/

td_to_ontology_matching/dataset/training
6https://git.fortiss.org/iiot/demonstrator2/-/tree/erkan/matching_improvement/

td_to_ontology_matching/dataset/testing_cleaned

38

6. Performance Evaluation

does this description relates to. In C-TESTING, only the sections of the WoT TD that
are applicable to the semantic matchmaking process are considered. The aim of this
specific dataset is to evaluate potential improvements in terms of node usage, e.g.,
CPU, memory, and eventually, running time.

6.2.4. Baseline Testing Dataset

The performance evaluation that has been carried out considers the testing datasets
(TESTING1, C-TESTING) as baseline7 which has been manually labelled. This dataset
has been built based on human assessment of the categorisation of each sensor on
the testing datasets against the aggregation points of the FIESTA ontology. Baseline
dataset contains sparsity for "domain of interest" category due to very few TDs
having domain related information. Therefore the "domain of interest" category
is excluded from all of the accuracy measurements that are described in the next
sections.

To exemplify how the labelling was done, consider a TD that has "humidity"
as its title, a description section which mentions that this sensor is measuring
relative humidity in a room and another field named "unit" and its value is "%".
By looking at the first 2 fields, and to the QuantityKind category in FIESTA-IoT
Ontology, one can infer that the TD can be linked to the FIESTA aggregation point
"RelativeHumidity". Among the sensing device category elements, this description
refers to a "HumiditySensor". By looking at the unit field, one can also infer that this
sensor provides data in percentages and hence it corresponds to "Percent" category
element for the unit category.

6.2.5. Word Vector Training Dataset

This dataset is used to derive worst-case and best-case accuracy thresholds, that can
be used to apply on the semantic matchmaking process. A worst-case and best-case
assessment assists in defining limits that are relevant in particular when considering
that the matchmaking process occurs on the Edge, eventually being applicable to far
Edge devices (constrained devices).

As mentioned in section 4.4.2, the word vectors published by Google includes 3
million vectors with 300 dimensions each that takes around 6 GBs of space in a
text file. Therefore a subset of the word vectors will be used. In order to analyse
different word vector subsets, an experiment that shows the effect of subset size on
the accuracy is carried out. Table 6.1 shows how different subset of word vectors

7https://git.fortiss.org/iiot/demonstrator2/-/tree/erkan/matching_improvement/
td_to_ontology_matching/dataset/testing/ground_truth.txt

39

6. Performance Evaluation

perform. The word vectors are ordered based on the frequency of the words in
descending order. Therefore each subset with size x refers to the most popular x
words. Subset size in MBs refers to how much space does a subset requires when
stored in a text file. Accuracy is calculated using the best performing key and value
thresholds, based on the results obtained after evaluating different key and value
thresholds (see section 6.3. While the subset size is linearly correlated with the size
of each file, the increase in accuracy gets lower as the subset size increases.

Table 6.1.: Size and accuracy comparison for word vector subsets of different sizes.

Subset size Size in MBs Accuracy

1,000 3.48 49.16

2,000 7.96 50.33

5,000 17.4 68.83

10,000 34.8 62.66

20,000 69.6 64.83

50,000 174 70.16

100,000 348 73

200,000 796 73.83

300,000 1194 74.66

For the accuracy comparison, the Word2Vec-based and k-Means-based semantic
matchmaking algorithms are trained using both the best performing and the worst
performing, smallest and the biggest set of vectors.

6.3. Results, Performance Comparison of Similarity
Approaches

This section includes a performance comparison of the selected similarity approaches.
Table 6.2 shows the settings for each of the similarity approach. The abbreviations
will be used for the rest of the chapter instead of the full name for convenience.

6.3.1. Similarity Threshold Impact on W2VEC

There are two threshold values that need to be set manually before running the
semantic matchmaking algorithm. As show in algorithm 2, these thresholds are the
key threshold which refers to the value where a key in a TD is accepted as similar to
an aggregation point, and the value threshold, where a value in a TD is accepted as

40

6. Performance Evaluation

Table 6.2.: Settings for each tested algorithm.

Similarity
approach

Dataset Abbreviation

LEX-DB
WordNet[18] lexical

db
LEX-DB

W2VEC TRAINING W2VEC-TD

W2VEC
300,000 vectors for
most popular words
published by Google

W2VEC-300k

W2VEC
1,000 vectors for

most popular words
published by Google

W2VEC-1k

K-MEANS TRAINING K-MEANS-TD

K-MEANS
300,000 vectors for
most popular words
published by Google

K-MEANS-300k

K-MEANS
1,000 vectors for

most popular words
published by Google

K-MEANS-1k

similar to child nodes of an aggregation point. In order to find which key and value
thresholds provide better accuracy, different combinations of the two thresholds
have been evaluated, for all of the proposed approaches. The sentence similarity
approach performed worse than the other 2 approaches in terms of accuracy with
using different key-value thresholds. The results for 2 best performing similarity
approaches, word2vec word embeddings and k-Means, are shown in this and the
following section.

Threshold Analysis for a 300,000 Vectors Dataset

The experiment has been carried out by considering the worst-case and best-case
word vectors from table 6.1.

Table 6.3 provide the results when considering 300,000 vectors.
Both key and value similarity is ranging between 0.5 and 0.9. Accuracy is at

the highest level when the key similarity threshold is 0.5, 0.7 and 0.8, and the
value similarity threshold is 0.7. When looking at the rows where value similarity
is 0.7, changing the key similarity impacts the accuracy in less than 1 percent. A

41

6. Performance Evaluation

Table 6.3.: Impact, key and value threshold, accuracy of W2VEC-300k.

Key similarity
threshold

Value similarity
threshold

Accuracy

0.5 0.5 64.66

0.5 0.6 69.16

0.5 0.7 74.33

0.5 0.8 65.83

0.5 0.9 58.66

0.6 0.5 66

0.6 0.6 70.66

0.6 0.7 74.16

0.6 0.8 65.66

0.6 0.9 58.33

0.7 0.5 66.16

0.7 0.6 70.83

0.7 0.7 74.33

0.7 0.8 65.83

0.7 0.9 58.33

0.8 0.5 66.16

0.8 0.6 70.83

0.8 0.7 74.33

0.8 0.8 65.83

0.8 0.9 58.33

0.9 0.5 65.83

0.9 0.6 70.16

0.9 0.7 73.66

0.9 0.8 65.16

0.9 0.9 58.33

roughly similar situation holds for all of the value similarity thresholds. On the other
hand, if the key similarity is kept fixed and the value similarity is changed, then
the accuracy varies more than 10 percent. As an example, when the key similarity
threshold is 0.5 and value similarity changes between 0.5 and 0.9 then the lowest
accuracy value becomes 58.66 while the highest accuracy is 74.33 percent. This
leads to the conclusion that value similarity threshold has more relevancy than
the key threshold on accuracy. This is expected, given that the value threshold

42

6. Performance Evaluation

relates with the matching to a child node on an ontology, so provides a finer-grained
matchmaking.

Since the accuracy is at the highest when the value similarity threshold is 0.7 and
the key similarity has a lot less relevancy than the value similarity threshold, another
experiment is carried out by ranging the value similarity threshold between 0.65 and
0.75 and keeping the key similarity threshold fixed at 0.5, 0.7 and 0.8. The purpose of
this experiment is to see how much the accuracy changes when a more finer-grained
increase on the value threshold is applied.

Results are presented in Table 6.4, which shows that accuracy is higher when the
value threshold is set to 0.67, 0.68 and 0.69. Setting the key similarity threshold
to 0.5, 0.7 or 0.8 produces the exact same results. Increasing the value similarity
threshold above 0.69 reduces the accuracy of the algorithm.

Table 6.4.: Impact of key and value threshold finer.grain values on the accuracy of
W2VEC-300k.

Key similarity
threshold

Value similarity
threshold

Accuracy

0.5, 0.7 or 0.8

0.65 74
0.66 74.16
0.67 74.66
0.68 74.66
0.69 74.66
0.7 74.33
0.71 74.33
0.72 71.66
0.73 71.66
0.74 71
0.75 71.5

Threshold Impact Analysis for a 1,000 Vectors Dataset

A larger vector dataset intuitively provides the best performance. However, it also
brings the trade-off of having to handle large storage and large processing times.
Therefore, a second experiment to calibrate the key and value thresholds is carried
out, by considering a small dataset, using only the 1,000 vectors for most popular
words from Google’s dataset.

Table 6.5 provides the results achieved when the key and similarity thresholds
varies between 0.5 and 0.9. The highest accuracy obtained from this experiment is

43

6. Performance Evaluation

Table 6.5.: Impact, key and value thresholds, W2VEC-1k.

Key similarity
threshold

Value similarity
threshold

Accuracy

0.5 0.5 45.16

0.5 0.6 48.16

0.5 0.7 49.16

0.5 0.8 50

0.5 0.9 49.5

0.6 0.5 45.16

0.6 0.6 48.16

0.6 0.7 49.16

0.6 0.8 50

0.6 0.9 49.5

0.7 0.5 45.16

0.7 0.6 48.16

0.7 0.7 49.16

0.7 0.8 50

0.7 0.9 49.5

0.8 0.5 45.16

0.8 0.6 48.16

0.8 0.7 49.16

0.8 0.8 50

0.8 0.9 49.5

0.9 0.5 45.16

0.9 0.6 48.16

0.9 0.7 49.16

0.9 0.8 50

0.9 0.9 49.5

50. This experiment shows that changing the key similarity threshold doesn’t impact
the accuracy result when 1,000 vectors are used. Accuracy values change only when
the value similarity change. We hypothesize that for sparse datasets, matchmaking
to aggregation points may not be enough to perform well.

Next, another experiment is performed to see how finer-grained changes in value
similarity threshold effects the accuracy. Results are shown in table 6.6. Since the
key similarity threshold didn’t have significant impact in the accuracy in the previous

44

6. Performance Evaluation

Table 6.6.: Impact, key and value thresholds, finer-grained approach, W2VEC-1k.

Key similarity
threshold

Value similarity
threshold

Accuracy

0.8

0.75 49.33
0.76 49.5
0.77 49.16
0.78 49.16
0.79 50
0.8 50
0.81 50
0.82 50
0.83 50
0.84 50
0.85 49.5

experiment, a key threshold is trivially picked for this experiment. The results show
that the highest accuracy is 50 when the value threshold is 0.79, 0.8, 0.81, 0.82, 0.83
or 0.84. Increasing the threshold further reduces the accuracy.

45

6. Performance Evaluation

6.3.2. Similarity Threshold Impact on K-Means

Threshold Impact Analysis for the 300,000 Vectors Dataset

The same experiments are repeated for the K-Means approach when different key
and value thresholds ranging between 0.5 and 0.9 are applied. Results are presented
in Table 6.7. In this experiment, changing the key threshold doesn’t impact the
accuracy. The best performing value threshold is 0.7 with an accuracy of 58.

Table 6.7.: Impact, key and value thresholds, K-MEANS-300k accuracy.

Key similarity
threshold

Value similarity
threshold

Accuracy

0.5 0.5 45.83

0.5 0.6 47.83

0.5 0.7 58

0.5 0.8 54.33

0.5 0.9 55

0.6 0.5 45.83

0.6 0.6 47.83

0.6 0.7 58

0.6 0.8 54.33

0.6 0.9 55

0.7 0.5 45.83

0.7 0.6 47.83

0.7 0.7 58

0.7 0.8 54.33

0.7 0.9 55

0.8 0.5 45.83

0.8 0.6 47.83

0.8 0.7 58

0.8 0.8 54.33

0.8 0.9 55

0.9 0.5 45.83

0.9 0.6 47.83

0.9 0.7 58

0.9 0.8 54.33

0.9 0.9 55

46

6. Performance Evaluation

A second experiment is conducted and results are shown in Table 6.8. The value
similarity ranges between 0.65 and 0.75 since the best performing value threshold in
the previous experiment was 0.7. In this case, 0.69 value similarity threshold lead to
the highest accuracy of 60.66.

Table 6.8.: Impact, key and value thresholds finer-grained values, K-MEANS-300k
accuracy.

Key similarity
threshold

Value similarity
threshold

Accuracy

0.8

0.65 53.16
0.66 56
0.67 56.65
0.68 60
0.69 60.66
0.7 58
0.71 60.33
0.72 59.83
0.73 59.16
0.74 59.16
0.75 58.5

47

6. Performance Evaluation

Threshold Impact Analysis for the 1,000 Vectors Dataset

We have run a similar experiment for 1,000 vectors using different key and value
thresholds and results are shown in table 6.9. Again, changing the key similarity
threshold for this experiment didn’t impact the algorithm accuracy. The best per-
forming value similarity threshold is 0.9 with the highest accuracy of 49.33 percent.

Table 6.9.: Impact, key and value thresholds, K-MEANS-1k accuracy.

Key similarity
threshold

Value similarity
threshold

Accuracy

0.5 0.5 33.5

0.5 0.6 37.16

0.5 0.7 39.83

0.5 0.8 41

0.5 0.9 49.33

0.6 0.5 33.5

0.6 0.6 37.16

0.6 0.7 39.83

0.6 0.8 41

0.6 0.9 49.33

0.7 0.5 33.5

0.7 0.6 37.16

0.7 0.7 39.83

0.7 0.8 41

0.7 0.9 49.33

0.8 0.5 33.5

0.8 0.6 37.16

0.8 0.7 39.83

0.8 0.8 41

0.8 0.9 49.33

0.9 0.5 33.5

0.9 0.6 37.16

0.9 0.7 39.83

0.9 0.8 41

0.9 0.9 49.33

Table 6.10 shows the effect of finer-grained value similarity threshold change on
the accuracy. In this time, value threshold ranges between 0.85 and 0.95 since the

48

6. Performance Evaluation

Table 6.10.: Impact, key and value thresholds, finer-grained values, K-MEANS-1k
accuracy.

Key Value Accuracy

0.8

0.85 49.16
0.86 49.33
0.87 49.33
0.88 49.33
0.89 49.33
0.9 49.33
0.91 49.5
0.92 49.5
0.93 49.5
0.94 49.5
0.95 49.33

previous experiment showed 0.9 as the best performing threshold. The accuracy
value is at the highest 49.6 level when the value threshold is 0.91, 0.92, 0.93 or 0.94.

6.3.3. Threshold Impact Analysis Summary

A summary for the threshold analysis is provided in Table 6.11. In regards to W2VEC-
300K, the threshold analysis shows that the best performing key threshold values
are 0.5, 0.7 and 0.8 for key and one of 0.67, 0.68 or 0.69 for value. When only 1,000
word vectors (W2VEC-1K) are used, the key similarity threshold does not impact
significantly the accuracy and the best performing value thresholds are: 0.79, 0.8,
0.81, 0.82, 0.83 or 0.84. In regards to K-MEANS-300K, the key similarity threshold

Table 6.11.: Summary, best performing key and value thresholds.

Approach Key Value

W2VEC-300k 0.5, 0.7 and 0.8 0.67, 0.68 or 0.69

W2VEC-1k No impact
0.79, 0.8, 0.81, 0.82,

0.83 or 0.84

K-MEANS-300K No impact 0.69

K-MEANS-1K No impact
0.91, 0.92, 0.93 or

0.94

changes did not impact significantly the algorithm accuracy, and the best performing

49

6. Performance Evaluation

value threshold is 0.69. When 1,000 word vectors are considered (K-MEANS-1K) the
key similarity threshold again didn’t have a significant impact on the accuracy and
the best performing value threshold was one of 0.91, 0.92, 0.93 or 0.94.

6.3.4. Algorithm Accuracy Analysis

A second set of experiments has been carried out to assess the accuracy of the
proposed approaches, for the best and worst-case threshold scenarios summarised
in Table 6.11.

The results are compared both in terms of the total matchmaking accuracy and
also accuracy per category used in the FIESTA-IoT ontology. As previously stated
in section 2.1, there are 4 categorizations published for quantity kind (QK), unit,
sensing device (SD) and domain of interest ontology elements. As mentioned in
section 6.2.4, the baseline testing dataset has a high sparsity when it comes to the
domain of interest category. Hence it has been excluded in the accuracy analysis.

A match occurs when the selected semantic matchmaking algorithm matches a
given TD to the same ontology element as the one that is in the baseline dataset. A
mismatch occurs when the algorithms matches the TD to a different ontology element.
Lastly, if the algorithm can’t find a match for a given TD even though there is a match
described in the baseline dataset, then we call it an undetected occurrence.

Tables 6.12, 6.13, 6.14, 6.15, 6.16, 6.17 and 6.18 provide results for the number of
matched, mismatched and undetected ontology elements where the applied algorithm
couldn’t detect the match, accuracy values per category and also total values for all
of proposed approaches.

Table 6.12.: Accuracy of LEX-DB.

QK Unit SD Total

Match 117 135 101 353

Mismatch 10 0 13 23

Undetected 73 65 86 224

Accuracy 58.5 67.5 50.5 58.83

Summary of Accuracy results

To better explain the results, Figure 6.1 presents the accuracy values achieved for all
algorithms when performing a matchmaking of IoT TDs to the FIESTA-IoT category
QK. Results shown that W2VEC achieves overall the best accuracy which significantly
decreases (as expected) when sparser datasets are used. K-Means is the second best

50

6. Performance Evaluation

Table 6.13.: Accuracy of W2VEC.

QK Unit SD Total

Match 55 76 48 179

Mismatch 137 110 144 391

Undetected 8 14 8 30

Accuracy 27.5 38 24 29.83

Table 6.14.: Accuracy of W2VEC-300k.

QK Unit SD Total

Match 151 156 141 448

Mismatch 21 12 8 41

Undetected 28 32 51 111

Accuracy 75.5 78 70.5 74.66

Table 6.15.: Accuracy of W2VEC-1K.

QK Unit SD Total

Match 100 118 82 300

Mismatch 43 11 47 101

Undetected 57 71 71 199

Accuracy 50 59 41 50

Table 6.16.: Accuracy of K-MEANS-TD.

QK Unit SD Total

Match 25 24 30 79

Mismatch 175 176 170 521

Undetected 0 0 0 0

Accuracy 12.5 12 15 13.16

performing algorithm overall, while LEX-DB also shows good performance (however,
LEX-DB has been trained with Word2NET). Figure 6.4 provides accuracy results for
all algorithms, when TDs are matched to the FIESTA-IoT category Unit. In this case,
W2VEC and K-MEANS achieve a similar performance, with one exception, when the
smaller and sparser dataset is considered. Overall, both algorithms achieve a good
accuracy percentage both for 300k vectors and for 1k vectors. LEX-DB is presented

51

6. Performance Evaluation

Table 6.17.: Accuracy of K-MEANS-300K.

QK Unit SD Total

Match 123 154 87 364

Mismatch 25 8 32 65

Undetected 52 38 81 171

Accuracy 62.5 77 43.5 60.66

Table 6.18.: Accuracy of K-MEANS-1K.

QK Unit SD Total

Match 92 115 90 297

Mismatch 33 13 13 59

Undetected 75 72 97 244

Accuracy 46 57.5 45 49.5

Figure 6.1.: Accuracy for category QK.

here, for reference. As explained, LEX-DB has been trained against WordNet and
therefore, the accuracy should not change.

Figure 6.3 provides accuracy results for all algorithms, when TDs are matched to
the FIESTA-IoT category SD.W2VEC is the algorithm that provides the best accuracy
for this case. K-MEANS exhibits a different result pattern, where the accuracy is

52

6. Performance Evaluation

Figure 6.2.: Accuracy for category Unit.

Figure 6.3.: Accuracy for category SD.

slightly higher for the sparser testing dataset (45 instead of 43). The LEX-DB value
is now lower for the SD category, which implies that the type of wording may not
adequately cover the SD category.

Figure 6.4 shows the total averaged accuracy per algorithm and case run. W2VEC

53

6. Performance Evaluation

Figure 6.4.: Total accuracy.

has a particular good performance when 300k vectors are used, but it significantly
reduces if 1k vectors are used. On the other hand, K-MEANS achieves less accuracy
than W2VEC when 300k vectors are considered, but seems more stable when 1k
vectors are applied.

Overall, W2VEC seems to provide better results when large, dense datasets are
considered. For the 1K case, W2VEC accuracy lowers and is similar to the one of
K-Means. However, for the majority of cases tested, W2VEC achieves the overall best
performance.

LEX-DB accuracy, which has been trained agains WordNet, can only be compared
with the cases run for 300k vectors. In such case, LEX-DB achieves lower perfor-
mance than either W2VEC or K-MEANS across all use-cases.

For the case of the smaller and sparser testing dataset (TD cases), both W2VEC
and K-MEANS is very low.

Overall, the accuracy achieved for all algorithms and ran cases is between 60%
and 80%. Idally, such accuracy should reach a 90% level, in order for an adequate
automated process to run better. We believe this can be improved by relying on
multiple ontologies, e.g., a cross-domain approach.

54

6. Performance Evaluation

6.4. Node Usage Analysis

A last batch of experiments has been run to assess node usage of each algorithm,
having in mind future deployments in Edge devices. For far Edge devices, we have
selected three different types of equipment representing different types of Edge
devices, and Table 6.19 shows CPU, memory, disk and operating systems for each
selected device:

• A Lenovo ThingPad T460p, standing for a regular end-user equipment device.

• A Raspberry Pi 4B, standing for an embedded Edge controller device.

• An Intel NUC 10, standing for an example of a IoT gateway device.

Table 6.19.: Hardware details and operating system of each testing device.

Device CPU Memory
Disk (Total /

Free
OS

Lenovo
ThingPad

T460p

Intel® Core™
i7-6700HQ

CPU @
2.60GHz × 8

Samsung
M471A1K43-
BB0-CPB 16

GiB

Samsung SSD
850 (465 GiB /

245 GiB)

Ubuntu
20.04.4 LTS

Raspberry Pi
4B

Broadcom
BCM2711,
Quad core
Cortex-A72
(ARM v8)

64-bit SoC @
1.5GHz

4GB RAM
32 GB / 16.8
GB SD Card

Raspbian
GNU/Linux 10

(buster)

Intel® NUC
10

Performance
kit

NUC10i7FNH

Intel(R)
Core(TM)
i7-10710U

CPU @
1.10GHz

Kingston
SODIMM

DDR4
Synchronous
2667 MHz 16

GiB

Samsung SSD
970 EVO Plus

(500 GBs /
404 GBs)

Ubuntu
20.04.3 LTS

The node usage analysis considers average time required to perform a match
(Matching Duration in milliseconds, MD), and peak memory in MBytes (PM, MB) use
for each selected algorithm. To obtain the running time, the semantic matchmaking
algorithm is executed with a given similarity algorithm for 200 times and average

55

6. Performance Evaluation

time required to match a TD to an ontology element is calculated. Memory usage of
the process that runs the matchmaking algorithm is also tracked during the whole
execution and highest memory usage is observed. Table 6.20 presents results for
TESTING1.

Table 6.20.: Node usage analysis results for TESTING1.

Device Type Device MD (ms) PM (MB) Algorithm

End-user
device

Lenovo
ThinkPad

T460p

156189 258 LEX-DB
774 3894 W2VEC-300k

2025 3910
K-MEANS-

300k
179 249 W2VEC-1k
609 249 K-MEANS-1k

Edge
controller

Raspberry Pi
4B

> 10 minutes 142 LEX-DB
2783 2401 W2VEC-300k

3899 2402
K-MEANS-

300k
715 121 W2VEC-1k
2531 122 K-MEANS-1k

IoT Gateway

Intel®
NUC 10

Performance
NUC10i7FNH

60979 256 LEX-DB
585 3889 W2VEC-300k

1440 3890
K-MEANS-

300k
145 240 W2VEC-1k
556 240 K-MEANS-1k

In terms of MD, the best algorithm is W2VEC across all devices. LEX-DB is by
far the algorithm performing worse across all devices. In regards to memory, the
algorithm that shows better performance is LEX-DB overall, while W2VEC and K-
MEANS show a similar performance. We have repeated the experiment for the
C-TESTING set, to understand if a deeper cleaning process of the dataset may in the
future significantly impact node usage results. Results are provided in Table 6.21.
Results show that a thorough cleaning process can improve results in terms of MD,
but we highlight that there is not a significant impact. For instance, W2VEC-300k has
a performance improvement from 774ms to 708ms (0.08%) for the Lenovo equipment;
a reduction from 2783 to 2184 ms (0.2%) for the Raspberry Pi 4B. The improvement
range is similar when considering the 1k cases (0.1%). In terms of memory usage,
there is also not a significant improvement.

56

6. Performance Evaluation

Adding a deeper cleaning process will also impact the overall memory and matching
time. The improvements observed hint that such integration may not pay up in terms
of node usage improvement.

Table 6.21.: Node usage analysis for C-TESTING.

Device Type Device MD (ms) PM (MB) Algorithm

End-user
device

Lenovo
ThinkPad

T460p

148911 257 LEX-DB
708 3892 W2VEC-300k

1266 3908
K-MEANS-

300k
160 249 W2VEC-1k
404 249 K-MEANS-1k

Edge
controller

Raspberry Pi
4B

> 10 minutes 141 LEX-DB
2184 2400 W2VEC-300k

3671 2401
K-MEANS-

300k
626 121 W2VEC-1k
1665 121 K-MEANS-1k

IoT Gateway

Intel®
NUC 10

Performance
NUC10i7FNH

56031 255 LEX-DB
515 3888 W2VEC-300k

910 3891
K-MEANS-

300k
124 240 W2VEC-1k
376 240 K-MEANS-1k

57

7. Key Findings

The dissertation proposed to address 4 key research questions as detailed in section
1.2.

Concerning RQ1 "Which functional blocks are required to support a semi-automated
match-making process between IoT TDs and service descriptions?", we have proposed
an architecture (rf. to Chapter 4) that comprises data pre-processing, interfacing to
ontologies, semantic matchmaking and data aggregation.

These 4 functional blocks serve the semantic matchmaking purpose. Moreover, we
have also analysed if a deeper cleaning process would assist the impact in terms of
node usage metrics. The experiments carried out in Chapter 6 show that the cleaning
does not seem to be a required artifact.

Concerning RQ2 "How to define similarity thresholds that are adequate for the
semantic matchmaking process?" we have carried out an extensive evaluation to
calibrate threshold values that can assist in a finer-grained matchmaking. The
achieved results show that the value threshold is more relevant than the key threshold
to assist a finer-grained semantic matchmaking. The value threshold assists in
performing a match to the child nodes of an aggregation point of the ontology.

IN regards RQ3 "Which approaches can be employed to support an ontology-based
semantic matchmaking process, and can ML improve the semantic matchmaking?",
we have implemented and evaluated three approaches (LEX-DB, W2VEC, K-MEANS)
in terms of accuracy and node usage.

The results show that W2VEC (NLP with a neural network model) achieved the best
performance for the majority of cases run, both in terms of accuracy and running
time. The clustering approach based on K-MEANS exhibits good performance for the
different sizes of training sets, but its performance is lower than the one achieved
with W2VEC. LEX-DB (cosine similarity approach) has shown the worse performance.

A list of additional key findings obtained is given below:

• The 2 ML-based approaches W2VEC and K-MEANS can extract semantic mean-
ing more accurately than LEX-DB as the latter does not include a learning
process. Overall, W2VEC achieved best performance than K-MEANS.

• W2VEC and K-MEANS have a better performance in terms of node usage than
LEX-DB.

58

7. Key Findings

• The word vectors published by Google represents generic meaning of words
rather than IoT related meaning since it is trained on Google News dataset.
This leads to inaccurate matchings or no matching at all. For example, the
word "temperature" in the Google News dataset most likely refers to weather
temperature rather than soil temperature. Therefore in a vector space it is
placed nearer to weather and weather related words.

• The better an IoT device is described, the better the matching is. Better refers
to how detailed a thing description is, e.g., does it include a measurement unit,
where does the device located?

• Performance of the semantic matchmaking also depends on how comprehensive
a given ontology is. For instance, if soil temperature is not listed among
measurement aspects in an ontology data, then a service that requires soil
temperature can never receive sensor observations.

59

8. Conclusions and Future Work

This dissertation is focused on on the development of semi-automated matchmaking
processes that can assist IoT interoperability in large-scale IoT networks. Initially,
we made the following assumptions: i) each IoT Thing has a semantic description
(TD); ii) every IoT service can be described semantically based on an ontology. Based
on these assumptions, we proposed an architectural solution to match IoT TDs to
service descriptions. The dissertation then assesses different semantic matchmaking
approaches, derived from a selection based on an analysis of related work. Three ap-
proaches have been selected (LEX-DB, W2VEC, K-MEANS) and evaluated in terms of
accuracy and node usage impact. During the dissertation, the proposed architectural
solution has been implemented on a realistic testbed (fortiss IIoT Lab, demonstrator
TSMatch) and open-source code is available.

Results achieved show that the best performing solution is W2VEC (NLP based on
a neural network model), being LEX-DB the worse performing solution. The results
achieved allowed also to detect gaps that can be addressed in future work. In order
for further improvements on the proposed approach, relevant aspects for future work
are:

• IoT TDs datasets need to be created and enriched. The created dataset is made
available via git1, and shall be enriched in future work, via the fortiss TSMatch
development.

• W2VEC and K-MEANs should be further assessed with experiments that con-
sider different percentages of training and testing sets.

• A research on how sensor data together with the metadata (thing descriptions)
can help semantic matchmaking process should be conducted.

• Smarter ways for sensor data fusion for a given IoT service are important to be
developed.

1https://git.fortiss.org/iiot/demonstrator2/-/tree/erkan/matching_improvement/
td_to_ontology_matching/dataset

60

A. Bibliography

[1] R. Agarwal, D. G. Fernandez, T. Elsaleh, A. Gyrard, J. Lanza, L. Sanchez, N.
Georgantas, and V. Issarny. “Unified IoT ontology to enable interoperability
and federation of testbeds.” In: 2016 IEEE 3rd World Forum on Internet of
Things (WF-IoT). IEEE. 2016, pp. 70–75.

[2] R. Agarwal, D. Gomez, T. Elsaleh, L. Sanchez, J. Lanza, and G. Amelie. “m3-lite
Taxonomy.” In: (July 2015). DOI: 10.5281/zenodo.1193303.

[3] R. Agarwal, D. Gomez, T. Elsaleh, L. Sanchez, J. Lanza, and A. Gyrard. “FIESTA-
IoT Ontology.” In: (Apr. 2016). DOI: 10.5281/zenodo.1193299.

[4] M. et al. word2vec. URL: https://code.google.com/archive/p/word2vec/.
(accessed: 01.03.2022).

[5] S. Bird, E. Klein, and E. Loper. Natural language processing with Python:
analyzing text with the natural language toolkit. " O’Reilly Media, Inc.", 2009.

[6] N. Bnouhanna, E. Karabulut, R. C. Sofia, E. E. Seder, G. Scivoletto, and G. In-
solvibile. “An Evaluation of a Semantic Thing To Service Matching Approach in
Industrial IoT Environments.” In: inProc IEEE Percom IoT-Prod 2022 Workshop.
2022.

[7] G. Cassar, P. Barnaghi, W. Wang, and K. Moessner. “A hybrid semantic match-
maker for IoT services.” In: 2012 IEEE International Conference on Green
Computing and Communications. IEEE. 2012, pp. 210–216.

[8] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. “Ontology matching: A
machine learning approach.” In: Handbook on ontologies. Springer, 2004,
pp. 385–403.

[9] M. Fazel-Zarandi and M. S. Fox. “Semantic matchmaking for job recruitment:
an ontology-based hybrid approach.” In: Proceedings of the 8th International
Semantic Web Conference. Vol. 525. 01. 2009, p. 2009.

[10] C. S. Guntupalli. Open-source implementation of Sentence similarity based on
Semantic nets and Corpus Statistics paper. https://github.com/chanddu/
Sentence-similarity-based-on-Semantic-nets-and-Corpus-Statistics-.
2016.

61

https://doi.org/10.5281/zenodo.1193303
https://doi.org/10.5281/zenodo.1193299
https://code.google.com/archive/p/word2vec/
https://github.com/chanddu/Sentence-similarity-based-on-Semantic-nets-and-Corpus-Statistics-
https://github.com/chanddu/Sentence-similarity-based-on-Semantic-nets-and-Corpus-Statistics-

A. Bibliography

[11] M. Lagally and M. McCool. “IoT Interoperability with W3C Web of Things.” In:
2022 IEEE 19th Annual Consumer Communications Networking Conference
(CCNC). 2022, pp. 1–5. DOI: 10.1109/CCNC49033.2022.9700546.

[12] Y. Li, D. McLean, Z. A. Bandar, J. D. O’shea, and K. Crockett. “Sentence
similarity based on semantic nets and corpus statistics.” In: IEEE transactions
on knowledge and data engineering 18.8 (2006), pp. 1138–1150.

[13] S. Lohmann, S. Negru, F. Haag, and T. Ertl. “Visualizing Ontologies with
VOWL.” In: Semantic Web 7.4 (2016), pp. 399–419. DOI: 10.3233/SW-150200.

[14] C. Luo, X. He, J. Zhan, L. Wang, W. Gao, and J. Dai. “Comparison and bench-
marking of ai models and frameworks on mobile devices.” In: arXiv preprint
arXiv:2005.05085 (2020).

[15] C. Malewski, A. Bröring, P. Maué, and K. Janowicz. “Semantic matchmaking &
mediation for sensors on the sensor web.” In: IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing 7.3 (2013), pp. 929–934.

[16] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient estimation of word
representations in vector space.” In: arXiv preprint arXiv:1301.3781 (2013).

[17] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. “Distributed
representations of words and phrases and their compositionality.” In: Advances
in neural information processing systems 26 (2013).

[18] G. A. Miller. “WordNet: a lexical database for English.” In: Communications of
the ACM 38.11 (1995), pp. 39–41.

[19] O. D. Model. OneDM SDF Playground. https://github.com/one- data-
model/playground/.

[20] Z. Peng, G. Xin, Y. Wei, W. Wang, B. Wang, and L. Wang. “Short Text Clustering
Enhanced by Semantic Matching Model.” In: 2019 2nd International Confer-
ence on Information Systems and Computer Aided Education (ICISCAE). IEEE.
2019, pp. 480–484.

[21] R. Řehůřek and P. Sojka. “Software Framework for Topic Modelling with
Large Corpora.” English. In: Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. Valletta, Malta: ELRA, May 2010, pp. 45–50.

[22] M. Ruta, F. Scioscia, G. Loseto, A. Pinto, and E. Di Sciascio. “Machine learning
in the Internet of Things: A semantic-enhanced approach.” In: Semantic Web
10.1 (2019), pp. 183–204.

62

https://doi.org/10.1109/CCNC49033.2022.9700546
https://doi.org/10.3233/SW-150200
https://github.com/one-data-model/playground/
https://github.com/one-data-model/playground/

A. Bibliography

[23] I. B. G. Sarasvananda, R. Wardoyo, and A. K. Sari. “The K-Means Clustering
Algorithm With Semantic Similarity To Estimate The Cost of Hospitalization.”
In: IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 13.4
(2019), pp. 313–322.

[24] A. Tzavaras and E. G. Petrakis. “Web of Things Functionality in IoT: A Service
Oriented Perspective.” In: 2021 12th International Conference on Information,
Intelligence, Systems & Applications (IISA). IEEE. 2021, pp. 1–8.

[25] W3C. Web of Things (WoT) Testing. https://github.com/w3c/wot-testing/.

[26] R. Zhang and N. El-Gohary. “A machine-learning approach for semantic match-
ing of building codes and building information models (BIMs) for supporting
automated code checking.” In: International Congress and Exhibition" Sustain-
able Civil Infrastructures”. Springer. 2019, pp. 64–73.

[27] X. Zhang, Y. Wang, and W. Shi. “{pCAMP}: Performance Comparison of Ma-
chine Learning Packages on the Edges.” In: USENIX workshop on hot topics
in edge computing (HotEdge 18). 2018.

[28] H. Zhao. “Semantic matching across heterogeneous data sources.” In: Com-
munications of the ACM 50.1 (2007), pp. 45–50.

63

https://github.com/w3c/wot-testing/

B. TD to Ontology Element Matching
Algorithm

Algorithm 1 TD to ontology element matching algorithm

1: procedure td_to_ontology_matching(thing_description)
2: short_td = "name", "description", "title" fields in thing_description
3: sensor_description = thing_description["sensor"]
4: delete "sensor" in thing_description
5: delete "name", "description", "title" fields in thing_description
6: ap = get_aggregation_points()
7: matching_dict = new Dictionary()
8: for ap_name in ap do
9: matching = match(short_td, ap["taxonomy"], ap["name"])

10: if matching == None then
11: matching = match(sensor_description, ap["taxonomy"], ap["name"])
12: if matching == None then
13: matching = match(thing_description, ap["taxonomy"], ap["name"])
14: end if
15: end if
16: matching_dict[ap_name] = matching
17: end for
18: return matching_dict
19: end procedure

64

B. TD to Ontology Element Matching Algorithm

Algorithm 2 Find a match for a given thing description in a given category

1: procedure match(thing_description, category, ap_name)
2: highest_score = 0
3: matched_key = None
4: for key in thing_description do
5: score = similarity(ap_name, key)
6: if score > highest_score then
7: highest_score = score
8: matched_key = key
9: end if

10: end for
11: if highest_score > KEY_SIMILARITY_THRESHOLD then
12: highest_score = 0
13: matched_value = None
14: for node_name in category do
15: score = similarity(node_name, thing_description[matched_key])
16: if score > highest_score then
17: highest_score = score
18: matched_value = thing_description[matched_key]
19: end if
20: end for
21: if highest_score > VALUE_SIMILARITY_THRESHOLD then
22: return matched_value
23: end if
24: end if
25: highest_score = 0
26: matched_value = None
27: for key in thing_description do
28: for node_name in category do
29: score = similarity(node_name, thing_description[key])
30: if score > highest_score then
31: highest_score = score
32: matched_value = thing_description[key]
33: end if
34: end for
35: end for
36: if highest_score > VALUE_SIMILARITY_THRESHOLD then
37: return matched_value
38: end if
39: end procedure

65

C. Source Code Documentation

This section includes file structure for the 3 TSMatch modules that are developed in
the scope of this dissertations.

data_aggregation/ // data aggregation module
start_data_aggregation.sh // runs the module
.env // environment variables
Dockerfile
requirements.txt // required libraries
src/

main.py // starting point
repository/ // db interactions

OntologyRepository.py // ontology related db operations
ServiceRequestRepository.py // service requests related db

operations
SensorRepository.py // sensors related db operations
BaseRepository.py // common db operations, e.g.

connect, disconnect
service/

ServiceRequest.py // active service requests
MQTTClient.py // mqtt client

handler/
ObservationEventHandler.py // handle an incoming observation

event
ServiceRequstEventHandler.py // handle an incoming service

request event
util/

Neo4jUtil.py // db related helper functions

ontology_interface/ // ontology interface module
manage.py // django starting point
.env // environment variables
Dockerfile
start_ontology_interface.sh // runs the module
requirements.txt
ontology/ // sample ontology files

m3-lite.owl
ontology.json

66

C. Source Code Documentation

ontology.txt
m3-lite.json
converter/ // owl to json converter

owl2vowl.jar
test.json

app/ // django app
tests.py
models.py
admin.py
apps.py
views.py // views for each url mappings
urls.py // url mappings
repository/ // db interactions

OntologyRepository.py // ontology related db operations
service/

MQTTClient.py // mqtt client
OntologyService.py // includes ontology import

operations
util/

StringUtil.py // string related helper functions
web/

asgi.py // initialize django asgi app
settings.py // django settings
urls.py // url mappings
wsgi.py // initialize django wsgi app

td_to_ontology_matching/ // things description to ontology
matching module

.env // environment variables
Dockerfile
requirements.txt // required libraries
start_data_enrichment.sh // runs the module
src/

main.py // module starting point
evaluate.py // performance evaluation
algorithm/

Clustering.py // k-means clustering
Word2Vec.py // word2vec
SentenceSimilarity.py // lexical-db based sentence

similarity
repository/ // db interactions

OntologyRepository.py // ontology related db operations
ThingRepository.py // things related db operations
SensorRepository.py // sensor related db operations

67

C. Source Code Documentation

BaseRepository.py // common db operations
service/

TDToOntologyMatching.py // match thing descriptions to
ontology elements

MQTTClient.py // mqtt client
preprocessing/

Word2vec.py // word2vec related pre-processing
operations

StringPreprocessing.py // string pre-processing
util/

StringUtil.py // string helper functions
Neo4jUtil.py // graph db helper functions
JSONUtil.py // json helper functions

dataset/
worst_final_clusters.json // clusters using 1k word vectors
best_final_clusters.json // clusters using 300k word

vectors
testing/ // testing dataset
testing_cleaned/ // cleaned testing dataset
training/ // training dataset
word2vec/ // word vectors

google/ // word vectors by Google
training/ // trained word vectors using

td training dataset

68

	Acknowledgments
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation and Goals
	Research Questions
	Activities and Roadmap
	Dissertation Scope

	State of the Art
	IoT Things Descriptions
	Semantic Matchmaking Approaches
	ML in far Edge devices
	Tooling
	Data Sets
	TSMatch: Thing to Service Matching Middleware
	Auxiliary Libraries and Other Tools

	Use-case
	Architectural Design
	Setup phase
	Ontology Interface

	Runtime phase
	Data Pre-processing

	Data pre-processing
	Semantic Matchmaking Algorithms
	LEX-DB: Sentence Similarity
	W2VEC: NLP and Word Embeddings
	k-Means: Clustering

	Data Aggregation

	Implementation
	Use-case Setup: fortiss IIoT Lab
	Hardware Equipment
	Software

	Ontology Interface
	TD to Ontology Matching
	Data Aggregation
	Data Flow

	Performance Evaluation
	Evaluation Plan and Experimental Settings
	Datasets
	TD Dataset
	Ontology Dataset
	Training and Testing Datasets
	Baseline Testing Dataset
	Word Vector Training Dataset

	Results, Performance Comparison of Similarity Approaches
	Similarity Threshold Impact on W2VEC
	Similarity Threshold Impact on K-Means
	Threshold Impact Analysis Summary
	Algorithm Accuracy Analysis

	Node Usage Analysis

	Key Findings
	Conclusions and Future Work
	Bibliography
	TD to Ontology Element Matching Algorithm
	Source Code Documentation

